{"title":"Life cycle assessment of metal powder production: a Bayesian stochastic Kriging model-based autonomous estimation","authors":"Haibo Xiao, Baoyun Gao, Shoukang Yu, Bin Liu, Sheng Cao, Shitong Peng","doi":"10.1007/s43684-024-00079-5","DOIUrl":"10.1007/s43684-024-00079-5","url":null,"abstract":"<div><p>Metal powder contributes to the environmental burdens of additive manufacturing (AM) substantially. Current life cycle assessments (LCAs) of metal powders present considerable variations of lifecycle environmental inventory due to process divergence, spatial heterogeneity, or temporal fluctuation. Most importantly, the amounts of LCA studies on metal powder are limited and primarily confined to partial material types. To this end, based on the data surveyed from a metal powder supplier, this study conducted an LCA of titanium and nickel alloy produced by electrode-inducted and vacuum-inducted melting gas atomization, respectively. Given that energy consumption dominates the environmental burden of powder production and is influenced by metal materials’ physical properties, we proposed a Bayesian stochastic Kriging model to estimate the energy consumption during the gas atomization process. This model considered the inherent uncertainties of training data and adaptively updated the parameters of interest when new environmental data on gas atomization were available. With the predicted energy use information of specific powder, the corresponding lifecycle environmental impacts can be further autonomously estimated in conjunction with the other surveyed powder production stages. Results indicated the environmental impact of titanium alloy powder is slightly higher than that of nickel alloy powder and their lifecycle carbon emissions are around 20 kg CO<sub>2</sub> equivalency. The proposed Bayesian stochastic Kriging model showed more accurate predictions of energy consumption compared with conventional Kriging and stochastic Kriging models. This study enables data imputation of energy consumption during gas atomization given the physical properties and producing technique of powder materials.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00079-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierpaolo Della Monica , Matteo Fedeli , Cristina Salonico , Andrea Vitaletti , Marco Zecchini
{"title":"Enabling efficient verification in a DApp: The case of copyright management","authors":"Pierpaolo Della Monica , Matteo Fedeli , Cristina Salonico , Andrea Vitaletti , Marco Zecchini","doi":"10.1016/j.bcra.2024.100234","DOIUrl":"10.1016/j.bcra.2024.100234","url":null,"abstract":"<div><div>The Interested Party Information (IPI) system uniquely identifies the rights holders worldwide, making it possible to know for each subject and at any time which rights are protected, by whom and for which territories. Currently, this service is provided in a centralized way but in 2021, the Italian Society of Authors and Editors (SIAE) deployed a blockchain-based solution to completely decentralize this database to (a) provide greater guarantees to the rights holders as well as end users and (b) make a first tangible step in the path towards an all in-chain solution decentralizing a relevant component of the current architecture. This solution relied on early versions of Algorand smart contracts, delegating some off-chain verification to trusted third parties in many practical scenarios. Moreover, the Algorand technology has developed new tools, allowing us to design new techniques to reduce some of the trust assumptions of the original solution and enhance its efficiency at the same time. In this paper, we present the evolution of the solutions we designed to issue new on-chain non-conflicting rights representations, namely representations that are consistent with those already available on-chain. Our solution relies on smart contracts that have been implemented to run our experiments to prove (a) the feasibility of the proposed approach, (b) the scalability of the proposed solutions, and (c) the sustainability in terms of costs.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 1","pages":"Article 100234"},"PeriodicalIF":6.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143101230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lessons for biosecurity education from the International Nuclear Security Education Network","authors":"Iris Magne , Olivia Ibbotson , Lijun Shang , Malcolm Dando","doi":"10.1016/j.jobb.2024.09.002","DOIUrl":"10.1016/j.jobb.2024.09.002","url":null,"abstract":"<div><div>With the rapid advances in technology and life science, biological security is now at a defining moment. The mandate of the 2022 Biological and Toxin Weapons Convention 9th Review Conference emphasised the urgent need for new tools to strengthen the Convention. In this paper, we review the development and efforts of the International Nuclear Security Education Network (INSEN) to provide examples of best practice for implementation of the newly founded International Biological Security Education Network (IBSEN). Learning from the lessons of the INSEN, the sustainability of the network through continuous engagement of its members is essential for the further development of global biosecurity education.</div></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"6 4","pages":"Pages 252-257"},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongzhi Li , Pengle Zhang , Meng Sun , Jin Huang , Ruhan He
{"title":"Pre-training transformer with dual-branch context content module for table detection in document images","authors":"Yongzhi Li , Pengle Zhang , Meng Sun , Jin Huang , Ruhan He","doi":"10.1016/j.vrih.2024.06.003","DOIUrl":"10.1016/j.vrih.2024.06.003","url":null,"abstract":"<div><h3>Background</h3><div>Document images such as statistical reports and scientific journals are widely used in information technology. Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction. However, because of the diversity in the shapes and sizes of tables, existing table detection methods adapted from general object detection algorithms, have not yet achieved satisfactory results. Incorrect detection results might lead to the loss of critical information.</div></div><div><h3>Methods</h3><div>Therefore, we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections. To better deal with table areas of different shapes and sizes, we added a dual-branch context content attention module (DCCAM) to high-dimensional features to extract context content information, thereby enhancing the network's ability to learn shape features. For feature fusion at different scales, we replaced the original 3×3 convolution with a multilayer residual module, which contains enhanced gradient flow information to improve the feature representation and extraction capability.</div></div><div><h3>Results</h3><div>We evaluated our method on public document datasets and compared it with previous methods, which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score. <span><span>https://github.com/YongZ-Lee/TD-DCCAM</span><svg><path></path></svg></span></div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 408-420"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Wen, Yuhuan Wang, Hao Wang, Wuzhen Shi, Wenming Cao
{"title":"Co-salient object detection with iterative purification and predictive optimization","authors":"Yang Wen, Yuhuan Wang, Hao Wang, Wuzhen Shi, Wenming Cao","doi":"10.1016/j.vrih.2024.06.002","DOIUrl":"10.1016/j.vrih.2024.06.002","url":null,"abstract":"<div><h3>Background</h3><div>Co-salient object detection (Co-SOD) aims to identify and segment commonly salient objects in a set of related images. However, most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation. These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.</div></div><div><h3>Methods</h3><div>To address this issue, this study introduces a novel Co-SOD method with iterative purification and predictive optimization (IPPO) comprising a common salient purification module (CSPM), predictive optimizing module (POM), and diminishing mixed enhancement block (DMEB).</div></div><div><h3>Results</h3><div>These components are designed to explore noise-free joint representations, assist the model in enhancing the quality of the final prediction results, and significantly improve the performance of the Co-SOD algorithm. Furthermore, through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM, POM, and DMEB, our experiments confirmed that these components are pivotal in enhancing the performance of the model, substantiating the significant advancements of our method over existing benchmarks. Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 396-407"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Music-stylized hierarchical dance synthesis with user control","authors":"Yanbo Cheng, Yichen Jiang, Yingying Wang","doi":"10.1016/j.vrih.2024.06.004","DOIUrl":"10.1016/j.vrih.2024.06.004","url":null,"abstract":"<div><h3>Background</h3><div>Synthesizing dance motions to match musical inputs is a significant challenge in animation research. Compared to functional human motions, such as locomotion, dance motions are creative and artistic, often influenced by music, and can be independent body language expressions. Dance choreography requires motion content to follow a general dance genre, whereas dance performances under musical influence are infused with diverse impromptu motion styles. Considering the high expressiveness and variations in space and time, providing accessible and effective user control for tuning dance motion styles remains an open problem.</div></div><div><h3>Methods</h3><div>In this study, we present a hierarchical framework that decouples the dance synthesis task into independent modules. We use a high-level choreography module built as a Transformer-based sequence model to predict the long-term structure of a dance genre and a low-level realization module that implements dance stylization and synchronization to match the musical input or user preferences. This novel framework allows the individual modules to be trained separately. Because of the decoupling, dance composition can fully utilize existing high-quality dance datasets that do not have musical accompaniments, and the dance implementation can conveniently incorporate user controls and edit motions through a decoder network. Each module is replaceable at runtime, which adds flexibility to the synthesis of dance sequences.</div></div><div><h3>Results</h3><div>Synthesized results demonstrate that our framework generates high-quality diverse dance motions that are well adapted to varying musical conditions and user controls.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 339-357"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert KOSK , Richard SOUTHERN , Lihua YOU , Shaojun BIAN , Willem KOKKE , Greg MAGUIRE
{"title":"Mesh representation matters: investigating the influence of different mesh features on perceptual and spatial fidelity of deep 3D morphable models","authors":"Robert KOSK , Richard SOUTHERN , Lihua YOU , Shaojun BIAN , Willem KOKKE , Greg MAGUIRE","doi":"10.1016/j.vrih.2024.08.006","DOIUrl":"10.1016/j.vrih.2024.08.006","url":null,"abstract":"<div><h3>Background</h3><div>Deep 3D morphable models (deep 3DMMs) play an essential role in computer vision. They are used in facial synthesis, compression, reconstruction and animation, avatar creation, virtual try-on, facial recognition systems and medical imaging. These applications require high spatial and perceptual quality of synthesised meshes. Despite their significance, these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.</div></div><div><h3>Methods</h3><div>We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes. This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with <span><math><mrow><msub><mi>L</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>L</mi><mn>2</mn></msub></mrow></math></span> norm metrics and underperforms on perceptual metrics. In contrast, using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error. The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.</div></div><div><h3>Results</h3><div>The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 383-395"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CURDIS: A template for incremental curve discretization algorithms and its application to conics","authors":"Philippe Latour, Marc Van Droogenbroeck","doi":"10.1016/j.vrih.2024.06.005","DOIUrl":"10.1016/j.vrih.2024.06.005","url":null,"abstract":"<div><div>We introduce CURDIS, a template for algorithms to discretize arcs of regular curves by incrementally producing a list of support pixels covering the arc. In this template, algorithms proceed by finding the tangent quadrant at each point of the arc and determining which side the curve exits the pixel according to a tailored criterion. These two elements can be adapted for any type of curve, leading to algorithms dedicated to the shape of specific curves. While the calculation of the tangent quadrant for various curves, such as lines, conics, or cubics, is simple, it is more complex to analyze how pixels are traversed by the curve. In the case of conic arcs, we found a criterion for determining the pixel exit side. This leads us to present a new algorithm, called CURDIS-C, specific to the discretization of conics, for which we provide all the details. Surprisingly, the criterion for conics requires between one and three sign tests and four additions per pixel, making the algorithm efficient for resource-constrained systems and feasible for fixed-point or integer arithmetic implementations. Our algorithm also perfectly handles the pathological cases in which the conic intersects a pixel twice or changes quadrants multiple times within this pixel, achieving this generality at the cost of potentially computing up to two square roots per arc. We illustrate the use of CURDIS for the discretization of different curves, such as ellipses, hyperbolas, and parabolas, even when they degenerate into lines or corners.</div></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":"6 5","pages":"Pages 358-382"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing","authors":"Zheyuan Chen, Jian Liu, Jian Li, Mukun Yuan, Guangping Yu","doi":"10.1007/s43684-024-00076-8","DOIUrl":"10.1007/s43684-024-00076-8","url":null,"abstract":"<div><p>Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00076-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
自主智能系统(英文)Pub Date : 2024-09-18DOI: 10.1007/s43684-024-00075-9
Gang Huang, Liangzhu Lu, Yifan Zhang, Gangfu Cao, Zhe Zhou
{"title":"Improved vision-only localization method for mobile robots in indoor environments","authors":"Gang Huang, Liangzhu Lu, Yifan Zhang, Gangfu Cao, Zhe Zhou","doi":"10.1007/s43684-024-00075-9","DOIUrl":"10.1007/s43684-024-00075-9","url":null,"abstract":"<div><p>To solve the problem of mobile robots needing to adjust their pose for accurate operation after reaching the target point in the indoor environment, a localization method based on scene modeling and recognition has been designed. Firstly, the offline scene model is created by both handcrafted feature and semantic feature. Then, the scene recognition and location calculation are performed online based on the offline scene model. To improve the accuracy of recognition and location calculation, this paper proposes a method that integrates both semantic features matching and handcrafted features matching. Based on the results of scene recognition, the accurate location is obtained through metric calculation with 3D information. The experimental results show that the accuracy of scene recognition is over 90%, and the average localization error is less than 1 meter. Experimental results demonstrate that the localization has a better performance after using the proposed improved method.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00075-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}