{"title":"An intelligent surface roughness prediction method based on automatic feature extraction and adaptive data fusion","authors":"Xun Zhang, Sibao Wang, Fangrui Gao, Hao Wang, Haoyu Wu, Ying Liu","doi":"10.1007/s43684-024-00083-9","DOIUrl":null,"url":null,"abstract":"<div><p>Machining quality prediction based on cutting big data is the core focus of current developments in intelligent manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses. Process-based predictions are generally constrained to the development of rudimentary regression models. Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction, principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly, by processing signals from multiple directions, time-frequency domain images with rich features can be obtained, which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can automatically identify sensitive data features through neural network fitting experiments and optimization, thereby eliminating the need for expert experience in determining the significance of data features. Based on this approach, the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models. Furthermore, this method enhances the intelligent machining level.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00083-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00083-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Machining quality prediction based on cutting big data is the core focus of current developments in intelligent manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses. Process-based predictions are generally constrained to the development of rudimentary regression models. Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction, principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly, by processing signals from multiple directions, time-frequency domain images with rich features can be obtained, which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can automatically identify sensitive data features through neural network fitting experiments and optimization, thereby eliminating the need for expert experience in determining the significance of data features. Based on this approach, the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models. Furthermore, this method enhances the intelligent machining level.