An intelligent surface roughness prediction method based on automatic feature extraction and adaptive data fusion

Xun Zhang, Sibao Wang, Fangrui Gao, Hao Wang, Haoyu Wu, Ying Liu
{"title":"An intelligent surface roughness prediction method based on automatic feature extraction and adaptive data fusion","authors":"Xun Zhang,&nbsp;Sibao Wang,&nbsp;Fangrui Gao,&nbsp;Hao Wang,&nbsp;Haoyu Wu,&nbsp;Ying Liu","doi":"10.1007/s43684-024-00083-9","DOIUrl":null,"url":null,"abstract":"<div><p>Machining quality prediction based on cutting big data is the core focus of current developments in intelligent manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses. Process-based predictions are generally constrained to the development of rudimentary regression models. Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction, principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly, by processing signals from multiple directions, time-frequency domain images with rich features can be obtained, which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can automatically identify sensitive data features through neural network fitting experiments and optimization, thereby eliminating the need for expert experience in determining the significance of data features. Based on this approach, the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models. Furthermore, this method enhances the intelligent machining level.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00083-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00083-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machining quality prediction based on cutting big data is the core focus of current developments in intelligent manufacturing. Presently, predictions of machining quality primarily rely on process and signal analyses. Process-based predictions are generally constrained to the development of rudimentary regression models. Signal-based predictions often require large amounts of data, multiple processing steps (such as noise reduction, principal component analysis, modulation, etc.), and have low prediction efficiency. In addition, the accuracy of the model depends on tedious manual parameter tuning. This paper proposes a convolutional neural network quality intelligent prediction model based on automatic feature extraction and adaptive data fusion (CNN-AFEADF). Firstly, by processing signals from multiple directions, time-frequency domain images with rich features can be obtained, which significantly benefit neural network learning. Secondly, the corresponding images in three directions are fused into one image by setting different fusion weight parameters. The optimal fusion weight parameters and window length are determined by the Particle Swarm Optimization algorithm (PSO). This data fusion method reduces training time by 16.74 times. Finally, the proposed method is verified by various experiments. This method can automatically identify sensitive data features through neural network fitting experiments and optimization, thereby eliminating the need for expert experience in determining the significance of data features. Based on this approach, the model achieves an average relative error of 2.95%, reducing the prediction error compared to traditional models. Furthermore, this method enhances the intelligent machining level.

一种基于自动特征提取和自适应数据融合的表面粗糙度智能预测方法
基于切削大数据的加工质量预测是当前智能制造发展的核心方向。目前,加工质量的预测主要依赖于过程和信号分析。基于过程的预测通常局限于基本回归模型的发展。基于信号的预测往往需要大量的数据,多个处理步骤(如降噪、主成分分析、调制等),并且预测效率较低。此外,模型的准确性依赖于繁琐的手动参数调整。提出了一种基于自动特征提取和自适应数据融合的卷积神经网络质量智能预测模型(CNN-AFEADF)。首先,通过对来自多个方向的信号进行处理,可以获得特征丰富的时频域图像,这对神经网络的学习有很大的帮助。其次,通过设置不同的融合权值参数,将三个方向对应的图像融合为一幅图像;采用粒子群优化算法(PSO)确定最优融合权参数和窗口长度。这种数据融合方法将训练时间缩短了16.74倍。最后,通过各种实验验证了所提出的方法。该方法可以通过神经网络拟合实验和优化自动识别敏感数据特征,从而消除了确定数据特征重要性时需要专家经验的需要。基于该方法,模型的平均相对误差为2.95%,与传统模型相比,降低了预测误差。进一步提高了智能化加工水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信