Shuichi Hayashi, Nobuhiko Ohno, Graham Knott, Zoltán Molnár
{"title":"研究大脑发育的相关光学和体电子显微镜。","authors":"Shuichi Hayashi, Nobuhiko Ohno, Graham Knott, Zoltán Molnár","doi":"10.1093/jmicro/dfad002","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in volume electron microscopy (EM) have been driving our thorough understanding of the brain architecture. Volume EM becomes increasingly powerful when cells and their subcellular structures that are imaged in light microscopy are correlated to those in ultramicrographs obtained with EM. This correlative approach, called correlative light and volume electron microscopy (vCLEM), is used to link three-dimensional ultrastructural information with physiological data such as intracellular Ca2+ dynamics. Genetic tools to express fluorescent proteins and/or an engineered form of a soybean ascorbate peroxidase allow us to perform vCLEM using natural landmarks including blood vessels without immunohistochemical staining. This immunostaining-free vCLEM has been successfully employed in two-photon Ca2+ imaging in vivo as well as in studying complex synaptic connections in thalamic neurons that receive a variety of specialized inputs from the cerebral cortex. In this mini-review, we overview how volume EM and vCLEM have contributed to studying the developmental processes of the brain. We also discuss potential applications of genetic manipulation of target cells using clustered regularly interspaced short palindromic repeats-associated protein 9 and subsequent volume EM to the analysis of protein localization as well as to loss-of-function studies of genes regulating brain development. We give examples for the combinatorial usage of genetic tools with vCLEM that will further enhance our understanding of regulatory mechanisms underlying brain development.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":"72 4","pages":"279-286"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlative light and volume electron microscopy to study brain development.\",\"authors\":\"Shuichi Hayashi, Nobuhiko Ohno, Graham Knott, Zoltán Molnár\",\"doi\":\"10.1093/jmicro/dfad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent advances in volume electron microscopy (EM) have been driving our thorough understanding of the brain architecture. Volume EM becomes increasingly powerful when cells and their subcellular structures that are imaged in light microscopy are correlated to those in ultramicrographs obtained with EM. This correlative approach, called correlative light and volume electron microscopy (vCLEM), is used to link three-dimensional ultrastructural information with physiological data such as intracellular Ca2+ dynamics. Genetic tools to express fluorescent proteins and/or an engineered form of a soybean ascorbate peroxidase allow us to perform vCLEM using natural landmarks including blood vessels without immunohistochemical staining. This immunostaining-free vCLEM has been successfully employed in two-photon Ca2+ imaging in vivo as well as in studying complex synaptic connections in thalamic neurons that receive a variety of specialized inputs from the cerebral cortex. In this mini-review, we overview how volume EM and vCLEM have contributed to studying the developmental processes of the brain. We also discuss potential applications of genetic manipulation of target cells using clustered regularly interspaced short palindromic repeats-associated protein 9 and subsequent volume EM to the analysis of protein localization as well as to loss-of-function studies of genes regulating brain development. We give examples for the combinatorial usage of genetic tools with vCLEM that will further enhance our understanding of regulatory mechanisms underlying brain development.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\"72 4\",\"pages\":\"279-286\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfad002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfad002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Correlative light and volume electron microscopy to study brain development.
Recent advances in volume electron microscopy (EM) have been driving our thorough understanding of the brain architecture. Volume EM becomes increasingly powerful when cells and their subcellular structures that are imaged in light microscopy are correlated to those in ultramicrographs obtained with EM. This correlative approach, called correlative light and volume electron microscopy (vCLEM), is used to link three-dimensional ultrastructural information with physiological data such as intracellular Ca2+ dynamics. Genetic tools to express fluorescent proteins and/or an engineered form of a soybean ascorbate peroxidase allow us to perform vCLEM using natural landmarks including blood vessels without immunohistochemical staining. This immunostaining-free vCLEM has been successfully employed in two-photon Ca2+ imaging in vivo as well as in studying complex synaptic connections in thalamic neurons that receive a variety of specialized inputs from the cerebral cortex. In this mini-review, we overview how volume EM and vCLEM have contributed to studying the developmental processes of the brain. We also discuss potential applications of genetic manipulation of target cells using clustered regularly interspaced short palindromic repeats-associated protein 9 and subsequent volume EM to the analysis of protein localization as well as to loss-of-function studies of genes regulating brain development. We give examples for the combinatorial usage of genetic tools with vCLEM that will further enhance our understanding of regulatory mechanisms underlying brain development.