谱贝叶斯网络理论

IF 1 3区 数学 Q1 MATHEMATICS
Luke Duttweiler, Sally W. Thurston, Anthony Almudevar
{"title":"谱贝叶斯网络理论","authors":"Luke Duttweiler,&nbsp;Sally W. Thurston,&nbsp;Anthony Almudevar","doi":"10.1016/j.laa.2023.06.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>A Bayesian Network (BN) is a probabilistic model that represents a set of variables using a directed acyclic graph (DAG). Current algorithms for learning BN structures from data focus on estimating the edges of a specific DAG, and often lead to many ‘likely’ network structures. In this paper, we lay the groundwork for an approach that focuses on learning global properties of the DAG rather than exact edges. This is done by defining the </span><span><em>structural </em><em>hypergraph</em></span> of a BN, which is shown to be related to the inverse-covariance matrix of the network. Spectral bounds are derived for the normalized inverse-covariance matrix, which are shown to be closely related to the maximum indegree of the associated BN.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"674 ","pages":"Pages 282-303"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373448/pdf/","citationCount":"1","resultStr":"{\"title\":\"Spectral Bayesian network theory\",\"authors\":\"Luke Duttweiler,&nbsp;Sally W. Thurston,&nbsp;Anthony Almudevar\",\"doi\":\"10.1016/j.laa.2023.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A Bayesian Network (BN) is a probabilistic model that represents a set of variables using a directed acyclic graph (DAG). Current algorithms for learning BN structures from data focus on estimating the edges of a specific DAG, and often lead to many ‘likely’ network structures. In this paper, we lay the groundwork for an approach that focuses on learning global properties of the DAG rather than exact edges. This is done by defining the </span><span><em>structural </em><em>hypergraph</em></span> of a BN, which is shown to be related to the inverse-covariance matrix of the network. Spectral bounds are derived for the normalized inverse-covariance matrix, which are shown to be closely related to the maximum indegree of the associated BN.</p></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"674 \",\"pages\":\"Pages 282-303\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373448/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002437952300215X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002437952300215X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

贝叶斯网络(BN)是一种概率模型,它使用有向无环图(DAG)表示一组变量。当前从数据中学习BN结构的算法侧重于估计特定DAG的边缘,并且通常会导致许多“可能的”网络结构。在本文中,我们为一种专注于学习DAG全局属性而不是精确边的方法奠定了基础。这是通过定义BN的结构超图来实现的,它被证明与网络的逆协方差矩阵相关。为归一化逆协方差矩阵导出了谱界,它被证明与相关BN的最大度密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Bayesian network theory

A Bayesian Network (BN) is a probabilistic model that represents a set of variables using a directed acyclic graph (DAG). Current algorithms for learning BN structures from data focus on estimating the edges of a specific DAG, and often lead to many ‘likely’ network structures. In this paper, we lay the groundwork for an approach that focuses on learning global properties of the DAG rather than exact edges. This is done by defining the structural hypergraph of a BN, which is shown to be related to the inverse-covariance matrix of the network. Spectral bounds are derived for the normalized inverse-covariance matrix, which are shown to be closely related to the maximum indegree of the associated BN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信