{"title":"彩色编码声辐射力脉冲成像提高甲状腺影像报告和数据系统的诊断性能。","authors":"Kai-Mei Lian, Teng Lin","doi":"10.3233/XST-221359","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the value of color-coded virtual touch tissue imaging (CCV) using acoustic radiation force pulse technology (ARFI) in diagnosing malignant thyroid nodules.</p><p><strong>Methods: </strong>Images including 189 thyroid nodules were collected as training samples and a binary logistic regression analysis was used to calculate regression coefficients for Thyroid Imaging Reporting and Data System (TI-RADS) and CCV. An integrated prediction model (TI-RADS+CCV) was then developed based on the regression coefficients. Another testing dataset involving 40 thyroid nodules was used to validate and compare the diagnostic performance of TI-RADS, CCV, and the integrated predictive models using the receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Both TI-RADS and CCV are independent predictors. The diagnostic performance advantage of CCV is insignificant compared to TI-RADS (P = 0.61). However, the diagnostic performance of the integrated prediction model is significantly higher than that of TI-RADS or CCV (all P < 0.05). Applying to the validation image dateset, the integrated predictive model yields an area under the curve (AUC) of 0.880.</p><p><strong>Conclusions: </strong>Developing a new predictive model that integrates the regression coefficients calculated from TI-RADS and CCV enables to achieve the superior performance of thyroid nodule diagnosis to that of using TI-RADS or CCV alone.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"31 3","pages":"511-523"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic performance of the thyroid imaging reporting and data system improved by color-coded acoustic radiation force pulse imaging.\",\"authors\":\"Kai-Mei Lian, Teng Lin\",\"doi\":\"10.3233/XST-221359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To explore the value of color-coded virtual touch tissue imaging (CCV) using acoustic radiation force pulse technology (ARFI) in diagnosing malignant thyroid nodules.</p><p><strong>Methods: </strong>Images including 189 thyroid nodules were collected as training samples and a binary logistic regression analysis was used to calculate regression coefficients for Thyroid Imaging Reporting and Data System (TI-RADS) and CCV. An integrated prediction model (TI-RADS+CCV) was then developed based on the regression coefficients. Another testing dataset involving 40 thyroid nodules was used to validate and compare the diagnostic performance of TI-RADS, CCV, and the integrated predictive models using the receiver operating characteristic (ROC) curves.</p><p><strong>Results: </strong>Both TI-RADS and CCV are independent predictors. The diagnostic performance advantage of CCV is insignificant compared to TI-RADS (P = 0.61). However, the diagnostic performance of the integrated prediction model is significantly higher than that of TI-RADS or CCV (all P < 0.05). Applying to the validation image dateset, the integrated predictive model yields an area under the curve (AUC) of 0.880.</p><p><strong>Conclusions: </strong>Developing a new predictive model that integrates the regression coefficients calculated from TI-RADS and CCV enables to achieve the superior performance of thyroid nodule diagnosis to that of using TI-RADS or CCV alone.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\"31 3\",\"pages\":\"511-523\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-221359\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-221359","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Diagnostic performance of the thyroid imaging reporting and data system improved by color-coded acoustic radiation force pulse imaging.
Objective: To explore the value of color-coded virtual touch tissue imaging (CCV) using acoustic radiation force pulse technology (ARFI) in diagnosing malignant thyroid nodules.
Methods: Images including 189 thyroid nodules were collected as training samples and a binary logistic regression analysis was used to calculate regression coefficients for Thyroid Imaging Reporting and Data System (TI-RADS) and CCV. An integrated prediction model (TI-RADS+CCV) was then developed based on the regression coefficients. Another testing dataset involving 40 thyroid nodules was used to validate and compare the diagnostic performance of TI-RADS, CCV, and the integrated predictive models using the receiver operating characteristic (ROC) curves.
Results: Both TI-RADS and CCV are independent predictors. The diagnostic performance advantage of CCV is insignificant compared to TI-RADS (P = 0.61). However, the diagnostic performance of the integrated prediction model is significantly higher than that of TI-RADS or CCV (all P < 0.05). Applying to the validation image dateset, the integrated predictive model yields an area under the curve (AUC) of 0.880.
Conclusions: Developing a new predictive model that integrates the regression coefficients calculated from TI-RADS and CCV enables to achieve the superior performance of thyroid nodule diagnosis to that of using TI-RADS or CCV alone.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes