Tiancheng Zhang, Yasir Q Almajidi, Sameer A Awad, Firas Rahi Alhachami, Maher Abdulfadhil Gatea, Wesam R Kadhum
{"title":"PASSAG聚合物凝胶剂量计在电子束放射治疗中的磁共振成像剂量学特性。","authors":"Tiancheng Zhang, Yasir Q Almajidi, Sameer A Awad, Firas Rahi Alhachami, Maher Abdulfadhil Gatea, Wesam R Kadhum","doi":"10.3233/XST-230073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated.</p><p><strong>Objective: </strong>This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies.</p><p><strong>Methods: </strong>The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days.</p><p><strong>Results: </strong>The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times.</p><p><strong>Conclusion: </strong>The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dosimetric properties of PASSAG polymer gel dosimeter in electron beam radiotherapy using magnetic resonance imaging.\",\"authors\":\"Tiancheng Zhang, Yasir Q Almajidi, Sameer A Awad, Firas Rahi Alhachami, Maher Abdulfadhil Gatea, Wesam R Kadhum\",\"doi\":\"10.3233/XST-230073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated.</p><p><strong>Objective: </strong>This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies.</p><p><strong>Methods: </strong>The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days.</p><p><strong>Results: </strong>The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times.</p><p><strong>Conclusion: </strong>The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-230073\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dosimetric properties of PASSAG polymer gel dosimeter in electron beam radiotherapy using magnetic resonance imaging.
Background: Several physical factors such as photon beam energy, electron beam energy, and dose rate may affect the dosimetric properties of polymer gel dosimeters. The photon beam energy and dose rate dependence of PASSAG gel dosimeter were previously evaluated.
Objective: This study aims to assess the dosimetric properties of the optimized PASSAG gel samples in various electron beam energies.
Methods: The optimized PASSAG gel samples are first fabricated and irradiated to various electron energies (5, 7, 10 and 12 MeV). Then, the response (R2) and sensitivity of gel samples are analyzed by magnetic resonance imaging technique at a dose range of 0 to 10 Gy, scanning room temperature range of 15 to 22 °C, and post-irradiation time range of 1 to 30 days.
Results: The R2-dose response and sensitivity of gel samples do not change under the evaluated electron beam energies (the differences are less than 5%). Furthermore, a dose resolution range of 11 to 38 cGy is obtained for the gel samples irradiated to different electron beam energies. Moreover, the findings show that the R2-dose response and sensitivity dependence of gel samples on electron beam energy varies over different scanning room temperatures and post-irradiation times.
Conclusion: The dosimetric assessment of the optimized PASSAG gel samples provides the promising data for this dosimeter during electron beam radiotherapy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.