青蒿琥酯以sirt1依赖的方式减少败血症介导的急性肺损伤。

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY
Bioimpacts Pub Date : 2023-01-01 DOI:10.34172/bi.2023.23585
Zhaohui Liu, Yanli Meng, Yu Miao, Lili Yu, Qiannan Yu
{"title":"青蒿琥酯以sirt1依赖的方式减少败血症介导的急性肺损伤。","authors":"Zhaohui Liu,&nbsp;Yanli Meng,&nbsp;Yu Miao,&nbsp;Lili Yu,&nbsp;Qiannan Yu","doi":"10.34172/bi.2023.23585","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear.</p><p><strong>Methods: </strong>LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro.</p><p><strong>Results: </strong>AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects.</p><p><strong>Conclusion: </strong>Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/52/7d/bi-13-219.PMC10329753.pdf","citationCount":"0","resultStr":"{\"title\":\"Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner.\",\"authors\":\"Zhaohui Liu,&nbsp;Yanli Meng,&nbsp;Yu Miao,&nbsp;Lili Yu,&nbsp;Qiannan Yu\",\"doi\":\"10.34172/bi.2023.23585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p></p><p><strong>Introduction: </strong>Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear.</p><p><strong>Methods: </strong>LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro.</p><p><strong>Results: </strong>AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects.</p><p><strong>Conclusion: </strong>Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.</p>\",\"PeriodicalId\":48614,\"journal\":{\"name\":\"Bioimpacts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/52/7d/bi-13-219.PMC10329753.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimpacts\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34172/bi.2023.23585\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2023.23585","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

简介:败血症介导的急性肺损伤(ALI)是一种危重的临床疾病。青蒿琥酯(AS)是一种从黄花蒿中发现的倍半萜内酯内过氧化物。AS具有广泛的生物和药理作用;然而,其对脂多糖(LPS)诱导的ALI的保护作用尚不清楚。方法:大鼠经支气管吸入LPS诱导ALI。然后用LPS处理NR8383细胞建立体外模型。此外,我们在体内和体外给药不同剂量的AS。结果:AS显著降低lps介导的肺细胞死亡,抑制肺中性粒细胞浸润。此外,AS增加了肺切片中SIRT1的表达。使用生物拮抗剂或shrna诱导的SIRT1表达降低可显著抑制AS对lps诱导的细胞损伤、肺功能障碍、中性粒细胞浸润和凋亡的保护作用。这表明SIRT1表达的增强在观察到的保护作用中起着至关重要的作用。结论:我们的研究结果可能表明,通过与SIRT1表达有关的机制,AS可用于治疗肺部疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner.

Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner.

Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner.

Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner.

Introduction: Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear.

Methods: LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro.

Results: AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects.

Conclusion: Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信