{"title":"在微创手术中使用深度学习的手术系统的发展(综述)。","authors":"Kenbun Sone, Saki Tanimoto, Yusuke Toyohara, Ayumi Taguchi, Yuichiro Miyamoto, Mayuyo Mori, Takayuki Iriyama, Osamu Wada-Hiraike, Yutaka Osuga","doi":"10.3892/br.2023.1628","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, artificial intelligence (AI) has been applied in various fields due to the development of new learning methods, such as deep learning, and the marked progress in computational processing speed. AI is also being applied in the medical field for medical image recognition and omics analysis of genomes and other data. Recently, AI applications for videos of minimally invasive surgeries have also advanced, and studies on such applications are increasing. In the present review, studies that focused on the following topics were selected: i) Organ and anatomy identification, ii) instrument identification, iii) procedure and surgical phase recognition, iv) surgery-time prediction, v) identification of an appropriate incision line, and vi) surgical education. The development of autonomous surgical robots is also progressing, with the Smart Tissue Autonomous Robot (STAR) and RAVEN systems being the most reported developments. STAR, in particular, is currently being used in laparoscopic imaging to recognize the surgical site from laparoscopic images and is in the process of establishing an automated suturing system, albeit in animal experiments. The present review examined the possibility of fully autonomous surgical robots in the future.</p>","PeriodicalId":8863,"journal":{"name":"Biomedical reports","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/aa/07/br-19-01-01628.PMC10265572.pdf","citationCount":"2","resultStr":"{\"title\":\"Evolution of a surgical system using deep learning in minimally invasive surgery (Review).\",\"authors\":\"Kenbun Sone, Saki Tanimoto, Yusuke Toyohara, Ayumi Taguchi, Yuichiro Miyamoto, Mayuyo Mori, Takayuki Iriyama, Osamu Wada-Hiraike, Yutaka Osuga\",\"doi\":\"10.3892/br.2023.1628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, artificial intelligence (AI) has been applied in various fields due to the development of new learning methods, such as deep learning, and the marked progress in computational processing speed. AI is also being applied in the medical field for medical image recognition and omics analysis of genomes and other data. Recently, AI applications for videos of minimally invasive surgeries have also advanced, and studies on such applications are increasing. In the present review, studies that focused on the following topics were selected: i) Organ and anatomy identification, ii) instrument identification, iii) procedure and surgical phase recognition, iv) surgery-time prediction, v) identification of an appropriate incision line, and vi) surgical education. The development of autonomous surgical robots is also progressing, with the Smart Tissue Autonomous Robot (STAR) and RAVEN systems being the most reported developments. STAR, in particular, is currently being used in laparoscopic imaging to recognize the surgical site from laparoscopic images and is in the process of establishing an automated suturing system, albeit in animal experiments. The present review examined the possibility of fully autonomous surgical robots in the future.</p>\",\"PeriodicalId\":8863,\"journal\":{\"name\":\"Biomedical reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/aa/07/br-19-01-01628.PMC10265572.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3892/br.2023.1628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3892/br.2023.1628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Evolution of a surgical system using deep learning in minimally invasive surgery (Review).
Recently, artificial intelligence (AI) has been applied in various fields due to the development of new learning methods, such as deep learning, and the marked progress in computational processing speed. AI is also being applied in the medical field for medical image recognition and omics analysis of genomes and other data. Recently, AI applications for videos of minimally invasive surgeries have also advanced, and studies on such applications are increasing. In the present review, studies that focused on the following topics were selected: i) Organ and anatomy identification, ii) instrument identification, iii) procedure and surgical phase recognition, iv) surgery-time prediction, v) identification of an appropriate incision line, and vi) surgical education. The development of autonomous surgical robots is also progressing, with the Smart Tissue Autonomous Robot (STAR) and RAVEN systems being the most reported developments. STAR, in particular, is currently being used in laparoscopic imaging to recognize the surgical site from laparoscopic images and is in the process of establishing an automated suturing system, albeit in animal experiments. The present review examined the possibility of fully autonomous surgical robots in the future.
期刊介绍:
Biomedical Reports is a monthly, peer-reviewed journal, dedicated to publishing research across all fields of biology and medicine, including pharmacology, pathology, gene therapy, genetics, microbiology, neurosciences, infectious diseases, molecular cardiology and molecular surgery. The journal provides a home for original research, case reports and review articles.