Dong Hyun Jo , Sangsu Bae , Hyongbum Henry Kim , Jin-Soo Kim , Jeong Hun Kim
{"title":"碱基和引物编辑在遗传性视网膜疾病治疗中的体内应用","authors":"Dong Hyun Jo , Sangsu Bae , Hyongbum Henry Kim , Jin-Soo Kim , Jeong Hun Kim","doi":"10.1016/j.preteyeres.2022.101132","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses </span>in patients<span><span><span> with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to </span>nutritional supplements<span> regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. </span></span>Genome editing<span><span>, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and </span>chromosomal translocations. Instead, using attached </span></span></span>deaminases<span> and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent </span></span><em>in vivo</em> application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"94 ","pages":"Article 101132"},"PeriodicalIF":18.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In vivo application of base and prime editing to treat inherited retinal diseases\",\"authors\":\"Dong Hyun Jo , Sangsu Bae , Hyongbum Henry Kim , Jin-Soo Kim , Jeong Hun Kim\",\"doi\":\"10.1016/j.preteyeres.2022.101132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses </span>in patients<span><span><span> with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to </span>nutritional supplements<span> regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. </span></span>Genome editing<span><span>, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and </span>chromosomal translocations. Instead, using attached </span></span></span>deaminases<span> and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent </span></span><em>in vivo</em> application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.</p></div>\",\"PeriodicalId\":21159,\"journal\":{\"name\":\"Progress in Retinal and Eye Research\",\"volume\":\"94 \",\"pages\":\"Article 101132\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Retinal and Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350946222000921\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946222000921","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
In vivo application of base and prime editing to treat inherited retinal diseases
Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses in patients with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to nutritional supplements regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. Genome editing, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and chromosomal translocations. Instead, using attached deaminases and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent in vivo application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.