Lauren M Friedman, Samuel J Eckrich, Mark D Rapport, Corey J Bohil, Catrina Calub
{"title":"多动症儿童的工作记忆和短期记忆:利用功能性近红外光谱(fNIRS)检查前额叶皮质功能。","authors":"Lauren M Friedman, Samuel J Eckrich, Mark D Rapport, Corey J Bohil, Catrina Calub","doi":"10.1080/09297049.2023.2213463","DOIUrl":null,"url":null,"abstract":"<p><p>Working memory impairments are an oft-reported deficit among children with ADHD, and complementary neuroimaging studies implicate reductions in prefrontal cortex (PFC) structure and function as a neurobiological explanation. Most imaging studies, however, rely on costly, movement-intolerant, and/or invasive methods to examine cortical differences. This is the first study to use a newer neuroimaging tool that overcomes these limitations, functional Near Infrared Spectroscopy (fNIRS), to investigate hypothesized prefrontal differences. Children (aged 8-12) with ADHD (<i>N</i> = 22) and typically developing (<i>N</i> = 18) children completed phonological working memory (PHWM) and short-term memory (PHSTM) tasks. Children with ADHD evinced poorer performance on both tasks, with greater differences observed in PHWM (Hedges' g = 0.67) relative to PHSTM (g = 0.39). fNIRS revealed reduced hemodynamic response among children with ADHD in the dorsolateral PFC while completing the PHWM task, but not within the anterior or posterior PFC. No between-group fNIRS differences were observed during the PHSTM task. Findings suggest that children with ADHD exhibit an inadequate hemodynamic response in a region of the brain that underlies PHWM abilities. The study also highlights the use of fNIRS as a cost-effective, noninvasive neuroimaging technique to localize/quantify neural activation patterns associated with executive functions.</p>","PeriodicalId":9789,"journal":{"name":"Child Neuropsychology","volume":" ","pages":"462-485"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Working and short-term memory in children with ADHD: an examination of prefrontal cortical functioning using functional Near-Infrared Spectroscopy (fNIRS).\",\"authors\":\"Lauren M Friedman, Samuel J Eckrich, Mark D Rapport, Corey J Bohil, Catrina Calub\",\"doi\":\"10.1080/09297049.2023.2213463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Working memory impairments are an oft-reported deficit among children with ADHD, and complementary neuroimaging studies implicate reductions in prefrontal cortex (PFC) structure and function as a neurobiological explanation. Most imaging studies, however, rely on costly, movement-intolerant, and/or invasive methods to examine cortical differences. This is the first study to use a newer neuroimaging tool that overcomes these limitations, functional Near Infrared Spectroscopy (fNIRS), to investigate hypothesized prefrontal differences. Children (aged 8-12) with ADHD (<i>N</i> = 22) and typically developing (<i>N</i> = 18) children completed phonological working memory (PHWM) and short-term memory (PHSTM) tasks. Children with ADHD evinced poorer performance on both tasks, with greater differences observed in PHWM (Hedges' g = 0.67) relative to PHSTM (g = 0.39). fNIRS revealed reduced hemodynamic response among children with ADHD in the dorsolateral PFC while completing the PHWM task, but not within the anterior or posterior PFC. No between-group fNIRS differences were observed during the PHSTM task. Findings suggest that children with ADHD exhibit an inadequate hemodynamic response in a region of the brain that underlies PHWM abilities. The study also highlights the use of fNIRS as a cost-effective, noninvasive neuroimaging technique to localize/quantify neural activation patterns associated with executive functions.</p>\",\"PeriodicalId\":9789,\"journal\":{\"name\":\"Child Neuropsychology\",\"volume\":\" \",\"pages\":\"462-485\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Child Neuropsychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/09297049.2023.2213463\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Child Neuropsychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/09297049.2023.2213463","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Working and short-term memory in children with ADHD: an examination of prefrontal cortical functioning using functional Near-Infrared Spectroscopy (fNIRS).
Working memory impairments are an oft-reported deficit among children with ADHD, and complementary neuroimaging studies implicate reductions in prefrontal cortex (PFC) structure and function as a neurobiological explanation. Most imaging studies, however, rely on costly, movement-intolerant, and/or invasive methods to examine cortical differences. This is the first study to use a newer neuroimaging tool that overcomes these limitations, functional Near Infrared Spectroscopy (fNIRS), to investigate hypothesized prefrontal differences. Children (aged 8-12) with ADHD (N = 22) and typically developing (N = 18) children completed phonological working memory (PHWM) and short-term memory (PHSTM) tasks. Children with ADHD evinced poorer performance on both tasks, with greater differences observed in PHWM (Hedges' g = 0.67) relative to PHSTM (g = 0.39). fNIRS revealed reduced hemodynamic response among children with ADHD in the dorsolateral PFC while completing the PHWM task, but not within the anterior or posterior PFC. No between-group fNIRS differences were observed during the PHSTM task. Findings suggest that children with ADHD exhibit an inadequate hemodynamic response in a region of the brain that underlies PHWM abilities. The study also highlights the use of fNIRS as a cost-effective, noninvasive neuroimaging technique to localize/quantify neural activation patterns associated with executive functions.
期刊介绍:
The purposes of Child Neuropsychology are to:
publish research on the neuropsychological effects of disorders which affect brain functioning in children and adolescents,
publish research on the neuropsychological dimensions of development in childhood and adolescence and
promote the integration of theory, method and research findings in child/developmental neuropsychology.
The primary emphasis of Child Neuropsychology is to publish original empirical research. Theoretical and methodological papers and theoretically relevant case studies are welcome. Critical reviews of topics pertinent to child/developmental neuropsychology are encouraged.
Emphases of interest include the following: information processing mechanisms; the impact of injury or disease on neuropsychological functioning; behavioral cognitive and pharmacological approaches to treatment/intervention; psychosocial correlates of neuropsychological dysfunction; definitive normative, reliability, and validity studies of psychometric and other procedures used in the neuropsychological assessment of children and adolescents. Articles on both normal and dysfunctional development that are relevant to the aforementioned dimensions are welcome. Multiple approaches (e.g., basic, applied, clinical) and multiple methodologies (e.g., cross-sectional, longitudinal, experimental, multivariate, correlational) are appropriate. Books, media, and software reviews will be published.