{"title":"RICT:一种一对一可逆图像旋转算法的旋转图像计算机断层扫描。","authors":"Chengxiang Wang, Richard Gordon","doi":"10.3233/XST-221248","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Mueller, Siddon and Joseph weighting algorithms are frequently used for projection and back-projection, which are relatively complicated when they are implemented in computer code.</p><p><strong>Objective: </strong>This study aims to reduce the actual complexity of the projection and back-projection.</p><p><strong>Methods: </strong>First, we neglect the exact shape of the pixel, so that its shadow is a rectangle projecting precisely to a detector bin, which implies that all the pixel weights are exactly 1 for each ray through them, otherwise are exactly 0. Next, a one-to-one reversible image rotation algorithm (RIRA) is proposed to compute the projection and back-projection, where two one-to-one mapping lists namely, U and V, are used to store the coordinates of a rotated pixel and its corresponding new coordinates, respectively. For each 2D projection, the projection is simply the column sum in each orientation according to the lists U and V. For each 2D back-projection, it is simply to arrange the projection to the corresponding column element according to the lists U and V. Thus, there is no need for an interpolation in the projection and back-projection. Last, a rotating image computed tomography (RICT) based on RIRA is proposed to reconstruct the image.</p><p><strong>Results: </strong>Experiments show the RICT reconstructs a good image that is close to the result of filtered back-projection (FBP) method according to the RMSE, PSNR and MSSIM values. What's more, our weight, projection and back-projection are much easier to be implemented in computer code than the FBP method.</p><p><strong>Conclusion: </strong>This study demonstrates that the RIRA method has potential to be used to simplify many computed tomography image reconstruction algorithms.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"31 3","pages":"463-482"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RICT: Rotating image computed tomography with a one-to-one reversible image rotation algorithm.\",\"authors\":\"Chengxiang Wang, Richard Gordon\",\"doi\":\"10.3233/XST-221248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Mueller, Siddon and Joseph weighting algorithms are frequently used for projection and back-projection, which are relatively complicated when they are implemented in computer code.</p><p><strong>Objective: </strong>This study aims to reduce the actual complexity of the projection and back-projection.</p><p><strong>Methods: </strong>First, we neglect the exact shape of the pixel, so that its shadow is a rectangle projecting precisely to a detector bin, which implies that all the pixel weights are exactly 1 for each ray through them, otherwise are exactly 0. Next, a one-to-one reversible image rotation algorithm (RIRA) is proposed to compute the projection and back-projection, where two one-to-one mapping lists namely, U and V, are used to store the coordinates of a rotated pixel and its corresponding new coordinates, respectively. For each 2D projection, the projection is simply the column sum in each orientation according to the lists U and V. For each 2D back-projection, it is simply to arrange the projection to the corresponding column element according to the lists U and V. Thus, there is no need for an interpolation in the projection and back-projection. Last, a rotating image computed tomography (RICT) based on RIRA is proposed to reconstruct the image.</p><p><strong>Results: </strong>Experiments show the RICT reconstructs a good image that is close to the result of filtered back-projection (FBP) method according to the RMSE, PSNR and MSSIM values. What's more, our weight, projection and back-projection are much easier to be implemented in computer code than the FBP method.</p><p><strong>Conclusion: </strong>This study demonstrates that the RIRA method has potential to be used to simplify many computed tomography image reconstruction algorithms.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\"31 3\",\"pages\":\"463-482\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-221248\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-221248","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
RICT: Rotating image computed tomography with a one-to-one reversible image rotation algorithm.
Background: The Mueller, Siddon and Joseph weighting algorithms are frequently used for projection and back-projection, which are relatively complicated when they are implemented in computer code.
Objective: This study aims to reduce the actual complexity of the projection and back-projection.
Methods: First, we neglect the exact shape of the pixel, so that its shadow is a rectangle projecting precisely to a detector bin, which implies that all the pixel weights are exactly 1 for each ray through them, otherwise are exactly 0. Next, a one-to-one reversible image rotation algorithm (RIRA) is proposed to compute the projection and back-projection, where two one-to-one mapping lists namely, U and V, are used to store the coordinates of a rotated pixel and its corresponding new coordinates, respectively. For each 2D projection, the projection is simply the column sum in each orientation according to the lists U and V. For each 2D back-projection, it is simply to arrange the projection to the corresponding column element according to the lists U and V. Thus, there is no need for an interpolation in the projection and back-projection. Last, a rotating image computed tomography (RICT) based on RIRA is proposed to reconstruct the image.
Results: Experiments show the RICT reconstructs a good image that is close to the result of filtered back-projection (FBP) method according to the RMSE, PSNR and MSSIM values. What's more, our weight, projection and back-projection are much easier to be implemented in computer code than the FBP method.
Conclusion: This study demonstrates that the RIRA method has potential to be used to simplify many computed tomography image reconstruction algorithms.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes