Krystina M Clarke, Ahmad Barari, Andrew Hogue, Adam Dubrowski
{"title":"使用德尔菲法选择众包的理论基础,并对其在众包应用程序中的应用进行排序。","authors":"Krystina M Clarke, Ahmad Barari, Andrew Hogue, Adam Dubrowski","doi":"10.1097/SIH.0000000000000719","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Since the catapult of online learning during the COVID-19 pandemic, most simulation laboratories are now completed virtually, leaving a gap in skills training and potential for technical skills decay. Acquiring standard, commercially available simulators is prohibitively expensive, but three-dimensional (3D) printing may provide an alternative. This project aimed to develop the theoretical foundations of a crowdsourcing Web-based application (Web app) to fill the gap in health professions simulation training equipment via community-based 3D printing. We aimed to discover how to effectively leverage crowdsourcing with local 3D printers and use these resources to produce simulators via this Web app accessed through computers or smart devices.</p><p><strong>Methods: </strong>First, a scoping literature review was conducted to discover the theoretical underpinnings of crowdsourcing. Second, these review results were ranked by consumer (health field) and producer (3D printing field) groups via modified Delphi method surveys to determine suitable community engagement strategies for the Web app. Third, the results informed different app iteration ideas and were then generalized beyond the app to address scenarios entailing environmental changes and demands.</p><p><strong>Results: </strong>A scoping review revealed 8 crowdsourcing-related theories. Three were deemed most suitable for our context by both participant groups: Motivation Crowding Theory, Social Exchange Theory, and Transaction Cost Theory. Each theory proposed a different crowdsourcing solution that can streamline additive manufacturing within simulation while applicable to multiple contexts.</p><p><strong>Conclusions: </strong>Results will be aggregated to develop this flexible Web app that adapts to stakeholder needs and ultimately solves this gap by delivering home-based simulation via community mobilization.</p>","PeriodicalId":49517,"journal":{"name":"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare","volume":" ","pages":"65-74"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a Delphi Method Approach to Select Theoretical Underpinnings of Crowdsourcing and Rank Their Application to a Crowdsourcing App.\",\"authors\":\"Krystina M Clarke, Ahmad Barari, Andrew Hogue, Adam Dubrowski\",\"doi\":\"10.1097/SIH.0000000000000719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Since the catapult of online learning during the COVID-19 pandemic, most simulation laboratories are now completed virtually, leaving a gap in skills training and potential for technical skills decay. Acquiring standard, commercially available simulators is prohibitively expensive, but three-dimensional (3D) printing may provide an alternative. This project aimed to develop the theoretical foundations of a crowdsourcing Web-based application (Web app) to fill the gap in health professions simulation training equipment via community-based 3D printing. We aimed to discover how to effectively leverage crowdsourcing with local 3D printers and use these resources to produce simulators via this Web app accessed through computers or smart devices.</p><p><strong>Methods: </strong>First, a scoping literature review was conducted to discover the theoretical underpinnings of crowdsourcing. Second, these review results were ranked by consumer (health field) and producer (3D printing field) groups via modified Delphi method surveys to determine suitable community engagement strategies for the Web app. Third, the results informed different app iteration ideas and were then generalized beyond the app to address scenarios entailing environmental changes and demands.</p><p><strong>Results: </strong>A scoping review revealed 8 crowdsourcing-related theories. Three were deemed most suitable for our context by both participant groups: Motivation Crowding Theory, Social Exchange Theory, and Transaction Cost Theory. Each theory proposed a different crowdsourcing solution that can streamline additive manufacturing within simulation while applicable to multiple contexts.</p><p><strong>Conclusions: </strong>Results will be aggregated to develop this flexible Web app that adapts to stakeholder needs and ultimately solves this gap by delivering home-based simulation via community mobilization.</p>\",\"PeriodicalId\":49517,\"journal\":{\"name\":\"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare\",\"volume\":\" \",\"pages\":\"65-74\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/SIH.0000000000000719\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation in Healthcare-Journal of the Society for Simulation in Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/SIH.0000000000000719","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Using a Delphi Method Approach to Select Theoretical Underpinnings of Crowdsourcing and Rank Their Application to a Crowdsourcing App.
Introduction: Since the catapult of online learning during the COVID-19 pandemic, most simulation laboratories are now completed virtually, leaving a gap in skills training and potential for technical skills decay. Acquiring standard, commercially available simulators is prohibitively expensive, but three-dimensional (3D) printing may provide an alternative. This project aimed to develop the theoretical foundations of a crowdsourcing Web-based application (Web app) to fill the gap in health professions simulation training equipment via community-based 3D printing. We aimed to discover how to effectively leverage crowdsourcing with local 3D printers and use these resources to produce simulators via this Web app accessed through computers or smart devices.
Methods: First, a scoping literature review was conducted to discover the theoretical underpinnings of crowdsourcing. Second, these review results were ranked by consumer (health field) and producer (3D printing field) groups via modified Delphi method surveys to determine suitable community engagement strategies for the Web app. Third, the results informed different app iteration ideas and were then generalized beyond the app to address scenarios entailing environmental changes and demands.
Results: A scoping review revealed 8 crowdsourcing-related theories. Three were deemed most suitable for our context by both participant groups: Motivation Crowding Theory, Social Exchange Theory, and Transaction Cost Theory. Each theory proposed a different crowdsourcing solution that can streamline additive manufacturing within simulation while applicable to multiple contexts.
Conclusions: Results will be aggregated to develop this flexible Web app that adapts to stakeholder needs and ultimately solves this gap by delivering home-based simulation via community mobilization.
期刊介绍:
Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare is a multidisciplinary publication encompassing all areas of applications and research in healthcare simulation technology. The journal is relevant to a broad range of clinical and biomedical specialties, and publishes original basic, clinical, and translational research on these topics and more: Safety and quality-oriented training programs; Development of educational and competency assessment standards; Reports of experience in the use of simulation technology; Virtual reality; Epidemiologic modeling; Molecular, pharmacologic, and disease modeling.