Harvey Ho, Shawn Means, Soroush Safaei, Peter John Hunter
{"title":"肝脏循环和运输的计算机模拟:从肝器官到小叶。","authors":"Harvey Ho, Shawn Means, Soroush Safaei, Peter John Hunter","doi":"10.1002/wsbm.1586","DOIUrl":null,"url":null,"abstract":"<p><p>The function of the liver depends critically on its blood supply. Numerous in silico models have been developed to study various aspects of the hepatic circulation, including not only the macro-hemodynamics at the organ level, but also the microcirculation at the lobular level. In addition, computational models of blood flow and bile flow have been used to study the transport, metabolism, and clearance of drugs in pharmacokinetic studies. These in silico models aim to provide insights into the liver organ function under both healthy and diseased states, and to assist quantitative analysis for surgical planning and postsurgery treatment. The purpose of this review is to provide an update on state-of-the-art in silico models of the hepatic circulation and transport processes. We introduce the numerical methods and the physiological background of these models. We also discuss multiscale frameworks that have been proposed for the liver, and their linkage with the large context of systems biology, systems pharmacology, and the Physiome project. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering Cardiovascular Diseases > Computational Models.</p>","PeriodicalId":29896,"journal":{"name":"WIREs Mechanisms of Disease","volume":"15 2","pages":"e1586"},"PeriodicalIF":4.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In silico modeling for the hepatic circulation and transport: From the liver organ to lobules.\",\"authors\":\"Harvey Ho, Shawn Means, Soroush Safaei, Peter John Hunter\",\"doi\":\"10.1002/wsbm.1586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The function of the liver depends critically on its blood supply. Numerous in silico models have been developed to study various aspects of the hepatic circulation, including not only the macro-hemodynamics at the organ level, but also the microcirculation at the lobular level. In addition, computational models of blood flow and bile flow have been used to study the transport, metabolism, and clearance of drugs in pharmacokinetic studies. These in silico models aim to provide insights into the liver organ function under both healthy and diseased states, and to assist quantitative analysis for surgical planning and postsurgery treatment. The purpose of this review is to provide an update on state-of-the-art in silico models of the hepatic circulation and transport processes. We introduce the numerical methods and the physiological background of these models. We also discuss multiscale frameworks that have been proposed for the liver, and their linkage with the large context of systems biology, systems pharmacology, and the Physiome project. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering Cardiovascular Diseases > Computational Models.</p>\",\"PeriodicalId\":29896,\"journal\":{\"name\":\"WIREs Mechanisms of Disease\",\"volume\":\"15 2\",\"pages\":\"e1586\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Mechanisms of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1586\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wsbm.1586","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
In silico modeling for the hepatic circulation and transport: From the liver organ to lobules.
The function of the liver depends critically on its blood supply. Numerous in silico models have been developed to study various aspects of the hepatic circulation, including not only the macro-hemodynamics at the organ level, but also the microcirculation at the lobular level. In addition, computational models of blood flow and bile flow have been used to study the transport, metabolism, and clearance of drugs in pharmacokinetic studies. These in silico models aim to provide insights into the liver organ function under both healthy and diseased states, and to assist quantitative analysis for surgical planning and postsurgery treatment. The purpose of this review is to provide an update on state-of-the-art in silico models of the hepatic circulation and transport processes. We introduce the numerical methods and the physiological background of these models. We also discuss multiscale frameworks that have been proposed for the liver, and their linkage with the large context of systems biology, systems pharmacology, and the Physiome project. This article is categorized under: Metabolic Diseases > Computational Models Metabolic Diseases > Biomedical Engineering Cardiovascular Diseases > Computational Models.