通过平均弗雷谢特导数实现函数充分降维。

IF 3.2 1区 数学 Q1 STATISTICS & PROBABILITY
Annals of Statistics Pub Date : 2022-04-01 Epub Date: 2022-04-07 DOI:10.1214/21-aos2131
Kuang-Yao Lee, Lexin Li
{"title":"通过平均弗雷谢特导数实现函数充分降维。","authors":"Kuang-Yao Lee, Lexin Li","doi":"10.1214/21-aos2131","DOIUrl":null,"url":null,"abstract":"<p><p>Sufficient dimension reduction (SDR) embodies a family of methods that aim for reduction of dimensionality without loss of information in a regression setting. In this article, we propose a new method for nonparametric function-on-function SDR, where both the response and the predictor are a function. We first develop the notions of functional central mean subspace and functional central subspace, which form the population targets of our functional SDR. We then introduce an average Fréchet derivative estimator, which extends the gradient of the regression function to the operator level and enables us to develop estimators for our functional dimension reduction spaces. We show the resulting functional SDR estimators are unbiased and exhaustive, and more importantly, without imposing any distributional assumptions such as the linearity or the constant variance conditions that are commonly imposed by all existing functional SDR methods. We establish the uniform convergence of the estimators for the functional dimension reduction spaces, while allowing both the number of Karhunen-Loève expansions and the intrinsic dimension to diverge with the sample size. We demonstrate the efficacy of the proposed methods through both simulations and two real data examples.</p>","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085580/pdf/nihms-1746366.pdf","citationCount":"0","resultStr":"{\"title\":\"FUNCTIONAL SUFFICIENT DIMENSION REDUCTION THROUGH AVERAGE FRÉCHET DERIVATIVES.\",\"authors\":\"Kuang-Yao Lee, Lexin Li\",\"doi\":\"10.1214/21-aos2131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sufficient dimension reduction (SDR) embodies a family of methods that aim for reduction of dimensionality without loss of information in a regression setting. In this article, we propose a new method for nonparametric function-on-function SDR, where both the response and the predictor are a function. We first develop the notions of functional central mean subspace and functional central subspace, which form the population targets of our functional SDR. We then introduce an average Fréchet derivative estimator, which extends the gradient of the regression function to the operator level and enables us to develop estimators for our functional dimension reduction spaces. We show the resulting functional SDR estimators are unbiased and exhaustive, and more importantly, without imposing any distributional assumptions such as the linearity or the constant variance conditions that are commonly imposed by all existing functional SDR methods. We establish the uniform convergence of the estimators for the functional dimension reduction spaces, while allowing both the number of Karhunen-Loève expansions and the intrinsic dimension to diverge with the sample size. We demonstrate the efficacy of the proposed methods through both simulations and two real data examples.</p>\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085580/pdf/nihms-1746366.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2131\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-aos2131","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

充分降维法(SDR)是一系列在回归环境中减少维度而不损失信息的方法。在本文中,我们提出了一种非参数函数对函数 SDR 的新方法,其中响应和预测都是一个函数。我们首先提出了函数中心均值子空间和函数中心子空间的概念,它们构成了函数 SDR 的群体目标。然后,我们引入平均弗雷谢特导数估计器,它将回归函数的梯度扩展到算子层面,使我们能够为函数降维空间开发估计器。我们证明了由此产生的函数 SDR 估计器是无偏的、详尽的,更重要的是,它不需要施加任何分布假设,如线性或恒定方差条件,而这些假设是所有现有函数 SDR 方法普遍施加的。我们建立了函数降维空间估计器的均匀收敛性,同时允许卡尔胡宁-洛埃夫展开数和本征维度随样本大小发散。我们通过模拟和两个真实数据实例证明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FUNCTIONAL SUFFICIENT DIMENSION REDUCTION THROUGH AVERAGE FRÉCHET DERIVATIVES.

Sufficient dimension reduction (SDR) embodies a family of methods that aim for reduction of dimensionality without loss of information in a regression setting. In this article, we propose a new method for nonparametric function-on-function SDR, where both the response and the predictor are a function. We first develop the notions of functional central mean subspace and functional central subspace, which form the population targets of our functional SDR. We then introduce an average Fréchet derivative estimator, which extends the gradient of the regression function to the operator level and enables us to develop estimators for our functional dimension reduction spaces. We show the resulting functional SDR estimators are unbiased and exhaustive, and more importantly, without imposing any distributional assumptions such as the linearity or the constant variance conditions that are commonly imposed by all existing functional SDR methods. We establish the uniform convergence of the estimators for the functional dimension reduction spaces, while allowing both the number of Karhunen-Loève expansions and the intrinsic dimension to diverge with the sample size. We demonstrate the efficacy of the proposed methods through both simulations and two real data examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Statistics
Annals of Statistics 数学-统计学与概率论
CiteScore
9.30
自引率
8.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信