Antigoni Belekou , Mohammad Zia Ul Haq Katshu , Neil Michael Dundon , Giovanni d'Avossa , Nikolaos Smyrnis
{"title":"精神分裂症患者视觉工作记忆的空间和非空间特征结合障碍","authors":"Antigoni Belekou , Mohammad Zia Ul Haq Katshu , Neil Michael Dundon , Giovanni d'Avossa , Nikolaos Smyrnis","doi":"10.1016/j.scog.2023.100281","DOIUrl":null,"url":null,"abstract":"<div><p>Working memory (WM) impairments are well recognized in schizophrenia patients (PSZ) and contribute to poor psycho-social outcomes in this population. Distinct neural networks underlay the ability to encode and recall visual and spatial information raising the possibility that profile of visual working memory performance may help pinpoint dysfunctional neural correlates in schizophrenia. This study assessed the resolution and associative aspects of visual working memory deficits in schizophrenia and whether these deficits arise during encoding or maintenance processes. A total of 60 participants (30 PSZ and 30 healthy controls) matched in age, gender and education assessed on a modified object in place (OiPT), a delayed non-match-to-sample (DNMST) and a delayed spatial estimation (DSET) task. Patients demonstrated lower accuracy than controls in binding visual features of the same object and recognizing novel objects as well as lower precision recalling the location of a memorized target. Moreover, response choice set size affected recognition accuracy more in PSZ than controls. However, delay duration affected spatial recall precisions, binding, and recognition accuracy equally in the two groups. Our results suggest that visual working memory (vWM) impairments in schizophrenia predominantly reflect spatial and non-spatial binding deficits, with largely preserved discrete feature information. Moreover, these impairments likely arise more during encoding than during maintenance. These binding deficits may reflect impaired effective neural functional connectivity observed in schizophrenia.</p></div>","PeriodicalId":38119,"journal":{"name":"Schizophrenia Research-Cognition","volume":"32 ","pages":"Article 100281"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/5c/main.PMC9930192.pdf","citationCount":"1","resultStr":"{\"title\":\"Spatial and non-spatial feature binding impairments in visual working memory in schizophrenia\",\"authors\":\"Antigoni Belekou , Mohammad Zia Ul Haq Katshu , Neil Michael Dundon , Giovanni d'Avossa , Nikolaos Smyrnis\",\"doi\":\"10.1016/j.scog.2023.100281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Working memory (WM) impairments are well recognized in schizophrenia patients (PSZ) and contribute to poor psycho-social outcomes in this population. Distinct neural networks underlay the ability to encode and recall visual and spatial information raising the possibility that profile of visual working memory performance may help pinpoint dysfunctional neural correlates in schizophrenia. This study assessed the resolution and associative aspects of visual working memory deficits in schizophrenia and whether these deficits arise during encoding or maintenance processes. A total of 60 participants (30 PSZ and 30 healthy controls) matched in age, gender and education assessed on a modified object in place (OiPT), a delayed non-match-to-sample (DNMST) and a delayed spatial estimation (DSET) task. Patients demonstrated lower accuracy than controls in binding visual features of the same object and recognizing novel objects as well as lower precision recalling the location of a memorized target. Moreover, response choice set size affected recognition accuracy more in PSZ than controls. However, delay duration affected spatial recall precisions, binding, and recognition accuracy equally in the two groups. Our results suggest that visual working memory (vWM) impairments in schizophrenia predominantly reflect spatial and non-spatial binding deficits, with largely preserved discrete feature information. Moreover, these impairments likely arise more during encoding than during maintenance. These binding deficits may reflect impaired effective neural functional connectivity observed in schizophrenia.</p></div>\",\"PeriodicalId\":38119,\"journal\":{\"name\":\"Schizophrenia Research-Cognition\",\"volume\":\"32 \",\"pages\":\"Article 100281\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/5c/main.PMC9930192.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia Research-Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215001323000045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia Research-Cognition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215001323000045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Spatial and non-spatial feature binding impairments in visual working memory in schizophrenia
Working memory (WM) impairments are well recognized in schizophrenia patients (PSZ) and contribute to poor psycho-social outcomes in this population. Distinct neural networks underlay the ability to encode and recall visual and spatial information raising the possibility that profile of visual working memory performance may help pinpoint dysfunctional neural correlates in schizophrenia. This study assessed the resolution and associative aspects of visual working memory deficits in schizophrenia and whether these deficits arise during encoding or maintenance processes. A total of 60 participants (30 PSZ and 30 healthy controls) matched in age, gender and education assessed on a modified object in place (OiPT), a delayed non-match-to-sample (DNMST) and a delayed spatial estimation (DSET) task. Patients demonstrated lower accuracy than controls in binding visual features of the same object and recognizing novel objects as well as lower precision recalling the location of a memorized target. Moreover, response choice set size affected recognition accuracy more in PSZ than controls. However, delay duration affected spatial recall precisions, binding, and recognition accuracy equally in the two groups. Our results suggest that visual working memory (vWM) impairments in schizophrenia predominantly reflect spatial and non-spatial binding deficits, with largely preserved discrete feature information. Moreover, these impairments likely arise more during encoding than during maintenance. These binding deficits may reflect impaired effective neural functional connectivity observed in schizophrenia.