{"title":"观察到的具有不同主体参与的二元动作的感觉运动表征:脑电图研究。","authors":"Manon A Krol, Tjeerd Jellema","doi":"10.1080/17588928.2022.2084605","DOIUrl":null,"url":null,"abstract":"<p><p>Observation of others' actions activates motor representations in sensorimotor cortex. Although action observation in the real-world often involves multiple agents displaying varying degrees of action involvement, most lab studies on action observation studied individual actions. We recorded EEG-mu suppression over sensorimotor cortex to investigate how the multi-agent nature of observed hand/arm actions is incorporated in sensorimotor action representations. Hereto we manipulated the extent of agent involvement in dyadic interactions presented in videos. In all clips two agents were present, of which agent-1 always performed the same action, while the involvement of agent-2 differed along three levels: (1) passive and uninvolved, (2) passively involved, (3) actively involved. Additionally, a no-action condition was presented. The occurrence of these four conditions was predictable thanks to cues at the start of each trial, which allowed to study possible mu anticipation effects. Dyadic interactions in which agent-2 was actively involved resulted in increased power suppression of the mu rhythm compared to dyadic interactions in which agent-2 was passively involved. The latter did not differ from actions in which agent-2 was present but not involved. No anticipation effects were found. The results suggest that the sensorimotor representation of a dyadic interaction takes into account the simultaneously performed bodily articulations of both agents, but no evidence was found for incorporation of their static articulated postures.</p>","PeriodicalId":10413,"journal":{"name":"Cognitive Neuroscience","volume":"14 1","pages":"25-35"},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensorimotor representation of observed dyadic actions with varying agent involvement: an EEG mu study.\",\"authors\":\"Manon A Krol, Tjeerd Jellema\",\"doi\":\"10.1080/17588928.2022.2084605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Observation of others' actions activates motor representations in sensorimotor cortex. Although action observation in the real-world often involves multiple agents displaying varying degrees of action involvement, most lab studies on action observation studied individual actions. We recorded EEG-mu suppression over sensorimotor cortex to investigate how the multi-agent nature of observed hand/arm actions is incorporated in sensorimotor action representations. Hereto we manipulated the extent of agent involvement in dyadic interactions presented in videos. In all clips two agents were present, of which agent-1 always performed the same action, while the involvement of agent-2 differed along three levels: (1) passive and uninvolved, (2) passively involved, (3) actively involved. Additionally, a no-action condition was presented. The occurrence of these four conditions was predictable thanks to cues at the start of each trial, which allowed to study possible mu anticipation effects. Dyadic interactions in which agent-2 was actively involved resulted in increased power suppression of the mu rhythm compared to dyadic interactions in which agent-2 was passively involved. The latter did not differ from actions in which agent-2 was present but not involved. No anticipation effects were found. The results suggest that the sensorimotor representation of a dyadic interaction takes into account the simultaneously performed bodily articulations of both agents, but no evidence was found for incorporation of their static articulated postures.</p>\",\"PeriodicalId\":10413,\"journal\":{\"name\":\"Cognitive Neuroscience\",\"volume\":\"14 1\",\"pages\":\"25-35\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17588928.2022.2084605\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17588928.2022.2084605","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Sensorimotor representation of observed dyadic actions with varying agent involvement: an EEG mu study.
Observation of others' actions activates motor representations in sensorimotor cortex. Although action observation in the real-world often involves multiple agents displaying varying degrees of action involvement, most lab studies on action observation studied individual actions. We recorded EEG-mu suppression over sensorimotor cortex to investigate how the multi-agent nature of observed hand/arm actions is incorporated in sensorimotor action representations. Hereto we manipulated the extent of agent involvement in dyadic interactions presented in videos. In all clips two agents were present, of which agent-1 always performed the same action, while the involvement of agent-2 differed along three levels: (1) passive and uninvolved, (2) passively involved, (3) actively involved. Additionally, a no-action condition was presented. The occurrence of these four conditions was predictable thanks to cues at the start of each trial, which allowed to study possible mu anticipation effects. Dyadic interactions in which agent-2 was actively involved resulted in increased power suppression of the mu rhythm compared to dyadic interactions in which agent-2 was passively involved. The latter did not differ from actions in which agent-2 was present but not involved. No anticipation effects were found. The results suggest that the sensorimotor representation of a dyadic interaction takes into account the simultaneously performed bodily articulations of both agents, but no evidence was found for incorporation of their static articulated postures.
期刊介绍:
Cognitive Neuroscience publishes high quality discussion papers and empirical papers on any topic in the field of cognitive neuroscience including perception, attention, memory, language, action, social cognition, and executive function. The journal covers findings based on a variety of techniques such as fMRI, ERPs, MEG, TMS, and focal lesion studies. Contributions that employ or discuss multiple techniques to shed light on the spatial-temporal brain mechanisms underlying a cognitive process are encouraged.