不同算法下分层双侧数据相对风险比的同质性检验。

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Ke-Yi Mou, Chang-Xing Ma, Zhi-Ming Li
{"title":"不同算法下分层双侧数据相对风险比的同质性检验。","authors":"Ke-Yi Mou,&nbsp;Chang-Xing Ma,&nbsp;Zhi-Ming Li","doi":"10.1080/02664763.2021.2017412","DOIUrl":null,"url":null,"abstract":"<p><p>Medical clinical studies about paired body parts often involve stratified bilateral data. The correlation between responses from paired parts should be taken into account to avoid biased or misleading results. This paper aims to test if the relative risk ratios across strata are equal under the optimal algorithms. Based on different algorithms, we obtain the desired global and constrained maximum likelihood estimations (MLEs). Three asymptotic test statistics (i.e. <math><msub><mi>T</mi> <mrow><mi>L</mi></mrow> </msub> </math> , <math><msub><mi>T</mi> <mrow><mi>S</mi> <mi>C</mi></mrow> </msub> </math> and <math><msub><mi>T</mi> <mrow><mi>W</mi></mrow> </msub> </math> ) are proposed. Monte Carlo simulations are conducted to evaluate the performance of these algorithms with respect to mean square errors of MLEs and convergence rate. The empirical results show Fisher scoring algorithm is usually better than other methods since it has effective convergence rate for global MLEs, and makes mean-square error lower for constrained MLEs. Three test statistics are compared in terms of type I error rate (TIE) and power. Among these statistics, <math><msub><mi>T</mi> <mrow><mi>S</mi> <mi>C</mi></mrow> </msub> </math> is recommended according to its robust TIEs and satisfactory power.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"50 5","pages":"1060-1077"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062238/pdf/CJAS_50_2017412.pdf","citationCount":"1","resultStr":"{\"title\":\"Homogeneity test of relative risk ratios for stratified bilateral data under different algorithms.\",\"authors\":\"Ke-Yi Mou,&nbsp;Chang-Xing Ma,&nbsp;Zhi-Ming Li\",\"doi\":\"10.1080/02664763.2021.2017412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical clinical studies about paired body parts often involve stratified bilateral data. The correlation between responses from paired parts should be taken into account to avoid biased or misleading results. This paper aims to test if the relative risk ratios across strata are equal under the optimal algorithms. Based on different algorithms, we obtain the desired global and constrained maximum likelihood estimations (MLEs). Three asymptotic test statistics (i.e. <math><msub><mi>T</mi> <mrow><mi>L</mi></mrow> </msub> </math> , <math><msub><mi>T</mi> <mrow><mi>S</mi> <mi>C</mi></mrow> </msub> </math> and <math><msub><mi>T</mi> <mrow><mi>W</mi></mrow> </msub> </math> ) are proposed. Monte Carlo simulations are conducted to evaluate the performance of these algorithms with respect to mean square errors of MLEs and convergence rate. The empirical results show Fisher scoring algorithm is usually better than other methods since it has effective convergence rate for global MLEs, and makes mean-square error lower for constrained MLEs. Three test statistics are compared in terms of type I error rate (TIE) and power. Among these statistics, <math><msub><mi>T</mi> <mrow><mi>S</mi> <mi>C</mi></mrow> </msub> </math> is recommended according to its robust TIEs and satisfactory power.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"50 5\",\"pages\":\"1060-1077\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062238/pdf/CJAS_50_2017412.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2021.2017412\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2021.2017412","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

配对身体部位的医学临床研究通常涉及分层的双侧数据。应考虑成对部分的反应之间的相关性,以避免有偏差或误导性的结果。本文旨在检验在最优算法下各层间的相对风险比是否相等。基于不同的算法,我们得到了理想的全局和约束最大似然估计(MLEs)。提出了三种渐近检验统计量(T L、T S C和T W)。通过蒙特卡罗仿真,从最大似然误差和收敛速度两方面对这些算法的性能进行了评价。实证结果表明,Fisher评分算法对全局mle具有有效的收敛速度,且对约束mle的均方误差较小,通常优于其他方法。在I型错误率(TIE)和功率方面比较了三个测试统计量。在这些统计中,T S C因其健壮的TIEs和令人满意的功率而被推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneity test of relative risk ratios for stratified bilateral data under different algorithms.

Medical clinical studies about paired body parts often involve stratified bilateral data. The correlation between responses from paired parts should be taken into account to avoid biased or misleading results. This paper aims to test if the relative risk ratios across strata are equal under the optimal algorithms. Based on different algorithms, we obtain the desired global and constrained maximum likelihood estimations (MLEs). Three asymptotic test statistics (i.e. T L , T S C and T W ) are proposed. Monte Carlo simulations are conducted to evaluate the performance of these algorithms with respect to mean square errors of MLEs and convergence rate. The empirical results show Fisher scoring algorithm is usually better than other methods since it has effective convergence rate for global MLEs, and makes mean-square error lower for constrained MLEs. Three test statistics are compared in terms of type I error rate (TIE) and power. Among these statistics, T S C is recommended according to its robust TIEs and satisfactory power.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信