Mehrdad Saadatmand , Muhammad Abbas , Eduard Paul Enoiu , Bernd-Holger Schlingloff , Wasif Afzal , Benedikt Dornauer , Michael Felderer
{"title":"SmartDelta项目:跨产品版本和变体的自动化质量保证和优化","authors":"Mehrdad Saadatmand , Muhammad Abbas , Eduard Paul Enoiu , Bernd-Holger Schlingloff , Wasif Afzal , Benedikt Dornauer , Michael Felderer","doi":"10.1016/j.micpro.2023.104967","DOIUrl":null,"url":null,"abstract":"<div><p>Software systems are often built in increments with additional features or enhancements on top of existing products. This incremental development may result in the deterioration of certain quality aspects. In other words, the software can be considered an evolving entity emanating different quality characteristics as it gets updated over time with new features or deployed in different operational environments. Approaching software development with this mindset and awareness regarding quality evolution over time can be a key factor for the long-term success of a company in today’s highly competitive market of industrial software-intensive products. Therefore, it is important to be able to accurately analyze and determine the quality implications of each change and increment to a software system. To address this challenge, the multinational SmartDelta project develops automated solutions for the quality assessment of product deltas in a continuous engineering environment. The project provides smart analytics from development artifacts and system executions, offering insights into quality degradation or improvements across different product versions, and providing recommendations for the next builds. This paper presents the challenges in incremental software development tackled in the scope of the SmartDelta project, and the solutions that are produced and planned in the project, along with the industrial impact of the project for software-intensive industrial systems.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"103 ","pages":"Article 104967"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141933123002119/pdfft?md5=f2f4c77923b79d0a277b67398c986b39&pid=1-s2.0-S0141933123002119-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SmartDelta project: Automated quality assurance and optimization across product versions and variants\",\"authors\":\"Mehrdad Saadatmand , Muhammad Abbas , Eduard Paul Enoiu , Bernd-Holger Schlingloff , Wasif Afzal , Benedikt Dornauer , Michael Felderer\",\"doi\":\"10.1016/j.micpro.2023.104967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Software systems are often built in increments with additional features or enhancements on top of existing products. This incremental development may result in the deterioration of certain quality aspects. In other words, the software can be considered an evolving entity emanating different quality characteristics as it gets updated over time with new features or deployed in different operational environments. Approaching software development with this mindset and awareness regarding quality evolution over time can be a key factor for the long-term success of a company in today’s highly competitive market of industrial software-intensive products. Therefore, it is important to be able to accurately analyze and determine the quality implications of each change and increment to a software system. To address this challenge, the multinational SmartDelta project develops automated solutions for the quality assessment of product deltas in a continuous engineering environment. The project provides smart analytics from development artifacts and system executions, offering insights into quality degradation or improvements across different product versions, and providing recommendations for the next builds. This paper presents the challenges in incremental software development tackled in the scope of the SmartDelta project, and the solutions that are produced and planned in the project, along with the industrial impact of the project for software-intensive industrial systems.</p></div>\",\"PeriodicalId\":49815,\"journal\":{\"name\":\"Microprocessors and Microsystems\",\"volume\":\"103 \",\"pages\":\"Article 104967\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141933123002119/pdfft?md5=f2f4c77923b79d0a277b67398c986b39&pid=1-s2.0-S0141933123002119-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessors and Microsystems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141933123002119\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933123002119","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
SmartDelta project: Automated quality assurance and optimization across product versions and variants
Software systems are often built in increments with additional features or enhancements on top of existing products. This incremental development may result in the deterioration of certain quality aspects. In other words, the software can be considered an evolving entity emanating different quality characteristics as it gets updated over time with new features or deployed in different operational environments. Approaching software development with this mindset and awareness regarding quality evolution over time can be a key factor for the long-term success of a company in today’s highly competitive market of industrial software-intensive products. Therefore, it is important to be able to accurately analyze and determine the quality implications of each change and increment to a software system. To address this challenge, the multinational SmartDelta project develops automated solutions for the quality assessment of product deltas in a continuous engineering environment. The project provides smart analytics from development artifacts and system executions, offering insights into quality degradation or improvements across different product versions, and providing recommendations for the next builds. This paper presents the challenges in incremental software development tackled in the scope of the SmartDelta project, and the solutions that are produced and planned in the project, along with the industrial impact of the project for software-intensive industrial systems.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.