Tong Jia, Liu Shi, Cunfeng Wei, Rongjian Shi, Baodong Liu
{"title":"基于mausnet的CL运动伪影校正。","authors":"Tong Jia, Liu Shi, Cunfeng Wei, Rongjian Shi, Baodong Liu","doi":"10.3233/XST-221335","DOIUrl":null,"url":null,"abstract":"<p><p>Computed laminography (CL) is one of the best methods for nondestructive testing of plate-like objects. If the object and the detector move continually while the scanning is being done, the data acquisition efficiency of CL will be significantly increased. However, the projection images will contain motion artifact as a result. A multi-angle fusion network (MAFusNet) is presented in order to correct the motion artifact of CL projection images considering the properties of CL projection images. The multi-angle fusion module significantly increases the ability of MAFusNet to deblur by using data from nearby projection images, and the feature fusion module lessens information loss brought on by data flow between the encoders. In contrast to conventional deblurring networks, the MAFusNet network employs synthetic datasets for training and performed well on realistic data, proving the network's outstanding generalization. The multi-angle fusion-based network has a significant improvement in the correction effect of CL motion artifact through ablation study and comparison with existing classical deblurring networks, and the synthetic training dataset can also significantly lower the training cost, which can effectively improve the quality and efficiency of CL imaging in industrial nondestructive testing.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":"31 2","pages":"393-407"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction of motion artifact in CL based on MAFusNet.\",\"authors\":\"Tong Jia, Liu Shi, Cunfeng Wei, Rongjian Shi, Baodong Liu\",\"doi\":\"10.3233/XST-221335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computed laminography (CL) is one of the best methods for nondestructive testing of plate-like objects. If the object and the detector move continually while the scanning is being done, the data acquisition efficiency of CL will be significantly increased. However, the projection images will contain motion artifact as a result. A multi-angle fusion network (MAFusNet) is presented in order to correct the motion artifact of CL projection images considering the properties of CL projection images. The multi-angle fusion module significantly increases the ability of MAFusNet to deblur by using data from nearby projection images, and the feature fusion module lessens information loss brought on by data flow between the encoders. In contrast to conventional deblurring networks, the MAFusNet network employs synthetic datasets for training and performed well on realistic data, proving the network's outstanding generalization. The multi-angle fusion-based network has a significant improvement in the correction effect of CL motion artifact through ablation study and comparison with existing classical deblurring networks, and the synthetic training dataset can also significantly lower the training cost, which can effectively improve the quality and efficiency of CL imaging in industrial nondestructive testing.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\"31 2\",\"pages\":\"393-407\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-221335\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-221335","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Correction of motion artifact in CL based on MAFusNet.
Computed laminography (CL) is one of the best methods for nondestructive testing of plate-like objects. If the object and the detector move continually while the scanning is being done, the data acquisition efficiency of CL will be significantly increased. However, the projection images will contain motion artifact as a result. A multi-angle fusion network (MAFusNet) is presented in order to correct the motion artifact of CL projection images considering the properties of CL projection images. The multi-angle fusion module significantly increases the ability of MAFusNet to deblur by using data from nearby projection images, and the feature fusion module lessens information loss brought on by data flow between the encoders. In contrast to conventional deblurring networks, the MAFusNet network employs synthetic datasets for training and performed well on realistic data, proving the network's outstanding generalization. The multi-angle fusion-based network has a significant improvement in the correction effect of CL motion artifact through ablation study and comparison with existing classical deblurring networks, and the synthetic training dataset can also significantly lower the training cost, which can effectively improve the quality and efficiency of CL imaging in industrial nondestructive testing.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes