超小型卫星导航接收机仿真

IF 0.2 Q4 INSTRUMENTS & INSTRUMENTATION
A. Spiridonov, Dmitrii Ushakov, V. Saechnikov
{"title":"超小型卫星导航接收机仿真","authors":"A. Spiridonov, Dmitrii Ushakov, V. Saechnikov","doi":"10.21122/2220-9506-2019-10-4-331-340","DOIUrl":null,"url":null,"abstract":"Currently, ultra-small satellite aresubjectstostringentrequirementsintermsoftheaccuracyof determining the position of the satellite in orbit, while the satellite is the subject to restrictions on mass, size and power consumption. The aim of this work is to simulate of navigation receiver operation for the ultra-small satellite with restrictions on energy consumption and computational resources.The operating conditions are considered and the requirements to the onboard navigation receiver for the ultra-small satellite are determined. The navigation receiver operation at the initial stage, performance testing, error detection, analysis of the reliability of the solution of the navigation-time determination problem are described.The structure of the design ballistics problems for orbit prediction of ultra-small spacecraft and navigation satellites, radio visibility intervals for GLONASS and GPS systems, parameters of navigation signals have been developed.The motion relative to the satellite systems GPS and GLONASS for a preliminary orbit of СubeBel-1 have been simulated. The Doppler dynamics of the GPS satellite signals in the receiver without restrictions on the relative speed for one day has been calculated. Radio visibility intervals for GPS and GLONASS satellites were calculated and optimal conditions for the cold start of the navigation receiver with a relative speed limit (Vr < 500 m/s) for 1 hour of operation both in separate and in joint operation on both systems were determined.To test the verification methods of the experimental data of the СubeBel-1 satellite, the operation of the navigation receiver of the Nsight satellite was studied according to the received telemetry from the beginning of its flight until the moment it entered stable operation.It is shown that the telemetry data of the navigation receiver at the testing stage had a significant error. After software correction, the navigation receiver worked steadily throughout the week of observation, the error of longitude and latitude measurements did not exceed 0.2 degrees.","PeriodicalId":41798,"journal":{"name":"Devices and Methods of Measurements","volume":"30 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Simulation of Navigation Receiver for Ultra-Small Satellite\",\"authors\":\"A. Spiridonov, Dmitrii Ushakov, V. Saechnikov\",\"doi\":\"10.21122/2220-9506-2019-10-4-331-340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, ultra-small satellite aresubjectstostringentrequirementsintermsoftheaccuracyof determining the position of the satellite in orbit, while the satellite is the subject to restrictions on mass, size and power consumption. The aim of this work is to simulate of navigation receiver operation for the ultra-small satellite with restrictions on energy consumption and computational resources.The operating conditions are considered and the requirements to the onboard navigation receiver for the ultra-small satellite are determined. The navigation receiver operation at the initial stage, performance testing, error detection, analysis of the reliability of the solution of the navigation-time determination problem are described.The structure of the design ballistics problems for orbit prediction of ultra-small spacecraft and navigation satellites, radio visibility intervals for GLONASS and GPS systems, parameters of navigation signals have been developed.The motion relative to the satellite systems GPS and GLONASS for a preliminary orbit of СubeBel-1 have been simulated. The Doppler dynamics of the GPS satellite signals in the receiver without restrictions on the relative speed for one day has been calculated. Radio visibility intervals for GPS and GLONASS satellites were calculated and optimal conditions for the cold start of the navigation receiver with a relative speed limit (Vr < 500 m/s) for 1 hour of operation both in separate and in joint operation on both systems were determined.To test the verification methods of the experimental data of the СubeBel-1 satellite, the operation of the navigation receiver of the Nsight satellite was studied according to the received telemetry from the beginning of its flight until the moment it entered stable operation.It is shown that the telemetry data of the navigation receiver at the testing stage had a significant error. After software correction, the navigation receiver worked steadily throughout the week of observation, the error of longitude and latitude measurements did not exceed 0.2 degrees.\",\"PeriodicalId\":41798,\"journal\":{\"name\":\"Devices and Methods of Measurements\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Devices and Methods of Measurements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2220-9506-2019-10-4-331-340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Devices and Methods of Measurements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2220-9506-2019-10-4-331-340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 5

摘要

目前,超小型卫星在确定卫星轨道位置的精度方面有严格的要求,而卫星又受到质量、尺寸和功耗的限制。本文的目的是模拟在能量消耗和计算资源限制下的超小型卫星导航接收机的运行。考虑了超小型卫星的运行条件,确定了对星载导航接收机的要求。介绍了导航接收机初始阶段的运行、性能测试、误差检测、可靠性分析,解决了导航时间确定问题。研究了超小型航天器和导航卫星轨道预测、GLONASS和GPS系统无线电可见间隔、导航信号参数等设计弹道问题的结构。模拟了相对于GPS和GLONASS卫星系统在СubeBel-1初步轨道上的运动。计算了不受相对速度限制的一天GPS卫星信号在接收机内的多普勒动力学。计算了GPS和GLONASS卫星的无线电可见间隔,确定了导航接收机在相对速度限制(Vr < 500 m/s)下分别运行和联合运行1小时的最佳冷启动条件。为了验证СubeBel-1卫星实验数据的验证方法,根据接收到的遥测数据,研究了insight卫星从飞行开始到进入稳定运行时刻的导航接收机的运行情况。结果表明,在测试阶段,导航接收机的遥测数据存在较大误差。经过软件校正,导航接收机在整个观测周内工作稳定,经纬度测量误差不超过0.2度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Navigation Receiver for Ultra-Small Satellite
Currently, ultra-small satellite aresubjectstostringentrequirementsintermsoftheaccuracyof determining the position of the satellite in orbit, while the satellite is the subject to restrictions on mass, size and power consumption. The aim of this work is to simulate of navigation receiver operation for the ultra-small satellite with restrictions on energy consumption and computational resources.The operating conditions are considered and the requirements to the onboard navigation receiver for the ultra-small satellite are determined. The navigation receiver operation at the initial stage, performance testing, error detection, analysis of the reliability of the solution of the navigation-time determination problem are described.The structure of the design ballistics problems for orbit prediction of ultra-small spacecraft and navigation satellites, radio visibility intervals for GLONASS and GPS systems, parameters of navigation signals have been developed.The motion relative to the satellite systems GPS and GLONASS for a preliminary orbit of СubeBel-1 have been simulated. The Doppler dynamics of the GPS satellite signals in the receiver without restrictions on the relative speed for one day has been calculated. Radio visibility intervals for GPS and GLONASS satellites were calculated and optimal conditions for the cold start of the navigation receiver with a relative speed limit (Vr < 500 m/s) for 1 hour of operation both in separate and in joint operation on both systems were determined.To test the verification methods of the experimental data of the СubeBel-1 satellite, the operation of the navigation receiver of the Nsight satellite was studied according to the received telemetry from the beginning of its flight until the moment it entered stable operation.It is shown that the telemetry data of the navigation receiver at the testing stage had a significant error. After software correction, the navigation receiver worked steadily throughout the week of observation, the error of longitude and latitude measurements did not exceed 0.2 degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Devices and Methods of Measurements
Devices and Methods of Measurements INSTRUMENTS & INSTRUMENTATION-
自引率
25.00%
发文量
18
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信