Pei-Chi Chen, Yen-Fu Su, Shin-Yueh Yang, K. Chiang
{"title":"声发射技术测定硅模初裂","authors":"Pei-Chi Chen, Yen-Fu Su, Shin-Yueh Yang, K. Chiang","doi":"10.1109/IMPACT.2011.6117283","DOIUrl":null,"url":null,"abstract":"Three-dimensional chip stacking packaging has become increasingly popular in the electronic packaging industry because of the present market demand on high performance, high capacity and small form factor products. As a result, silicon wafers have to be ground through wafer-thinning processes to achieve greater packaging density. However, induction of cracks on the chips during stacking process or with the use of a device is possible. Therefore, the current research aims to determine the maximum allowable force on a (1 0 0) silicon die using ball-breaker test with an acoustic emission (AE) system. To compare with the experiment data, the finite element analysis was employed using commercial software ANSYS/LS-DYNA3D® to determine the silicon die strength. The results show that the maximum allowable force for a 30 mm × 30 mm × 0.2 mm (1 0 0) silicon is 14.42 N. The value was introduced to simulation to determine the strength of silicon die. The strength of silicon die is 618 MPa, which is lower than that obtained from a previous research that conducted the ball-breaker test without an AE system, the allowable strength is defined as when silicon is fully cracked. The advantage of the method developed in this research is the AE system could detect the failure instantly and obtain the event of initial cracking. The modified ball-breaker test could avoid an overestimation in determining the die strength.","PeriodicalId":6360,"journal":{"name":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","volume":"66 1","pages":"83-86"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determination of silicon die initial crack using acoustic emission technique\",\"authors\":\"Pei-Chi Chen, Yen-Fu Su, Shin-Yueh Yang, K. Chiang\",\"doi\":\"10.1109/IMPACT.2011.6117283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional chip stacking packaging has become increasingly popular in the electronic packaging industry because of the present market demand on high performance, high capacity and small form factor products. As a result, silicon wafers have to be ground through wafer-thinning processes to achieve greater packaging density. However, induction of cracks on the chips during stacking process or with the use of a device is possible. Therefore, the current research aims to determine the maximum allowable force on a (1 0 0) silicon die using ball-breaker test with an acoustic emission (AE) system. To compare with the experiment data, the finite element analysis was employed using commercial software ANSYS/LS-DYNA3D® to determine the silicon die strength. The results show that the maximum allowable force for a 30 mm × 30 mm × 0.2 mm (1 0 0) silicon is 14.42 N. The value was introduced to simulation to determine the strength of silicon die. The strength of silicon die is 618 MPa, which is lower than that obtained from a previous research that conducted the ball-breaker test without an AE system, the allowable strength is defined as when silicon is fully cracked. The advantage of the method developed in this research is the AE system could detect the failure instantly and obtain the event of initial cracking. The modified ball-breaker test could avoid an overestimation in determining the die strength.\",\"PeriodicalId\":6360,\"journal\":{\"name\":\"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)\",\"volume\":\"66 1\",\"pages\":\"83-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMPACT.2011.6117283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2011.6117283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
由于目前市场对高性能、高容量和小尺寸产品的需求,三维芯片堆叠封装在电子封装行业越来越受欢迎。因此,硅片必须通过晶圆减薄工艺进行研磨,以实现更大的封装密度。然而,在堆叠过程中或使用设备时,芯片上可能会产生裂纹。因此,本研究的目的是利用声发射(AE)系统的破球试验来确定(1 0 0)硅模上的最大允许力。为了与实验数据进行比较,利用商业软件ANSYS/LS-DYNA3D®进行有限元分析,确定硅模强度。结果表明,30 mm × 30 mm × 0.2 mm(1 0 0)硅的最大许用力为14.42 n。硅模强度为618 MPa,低于前人在无声发射系统下进行破球试验所得强度,允许强度定义为硅完全开裂时的强度。该方法的优点是声发射系统可以即时检测到破坏并获得初始开裂事件。改进的破球试验可以避免在确定模具强度时高估。
Determination of silicon die initial crack using acoustic emission technique
Three-dimensional chip stacking packaging has become increasingly popular in the electronic packaging industry because of the present market demand on high performance, high capacity and small form factor products. As a result, silicon wafers have to be ground through wafer-thinning processes to achieve greater packaging density. However, induction of cracks on the chips during stacking process or with the use of a device is possible. Therefore, the current research aims to determine the maximum allowable force on a (1 0 0) silicon die using ball-breaker test with an acoustic emission (AE) system. To compare with the experiment data, the finite element analysis was employed using commercial software ANSYS/LS-DYNA3D® to determine the silicon die strength. The results show that the maximum allowable force for a 30 mm × 30 mm × 0.2 mm (1 0 0) silicon is 14.42 N. The value was introduced to simulation to determine the strength of silicon die. The strength of silicon die is 618 MPa, which is lower than that obtained from a previous research that conducted the ball-breaker test without an AE system, the allowable strength is defined as when silicon is fully cracked. The advantage of the method developed in this research is the AE system could detect the failure instantly and obtain the event of initial cracking. The modified ball-breaker test could avoid an overestimation in determining the die strength.