{"title":"一种非结构化环境下移动机器人导航的混合避障方法","authors":"Huaidong Zhou, Pengbo Feng, Wusheng Chou","doi":"10.1108/ir-04-2022-0102","DOIUrl":null,"url":null,"abstract":"\nPurpose\nWheeled mobile robots (WMR) are the most widely used robots. Avoiding obstacles in unstructured environments, especially dynamic obstacles such as pedestrians, is a serious challenge for WMR. This paper aims to present a hybrid obstacle avoidance method that combines an informed-rapidly exploring random tree* algorithm with a three-dimensional (3D)-object detection approach and model prediction controller (MPC) to conduct obstacle perception, collision-free path planning and obstacle avoidance for WMR in unstructured environments.\n\n\nDesign/methodology/approach\nGiven a reference orientation and speed, the hybrid method uses parametric ellipses to represent obstacle expansion boundaries based on the 3D target detection results, and a collision-free reference path is planned. Then, the authors build on a model predictive control for tracking the collision-free reference path by incorporating the distance between the robot and obstacles. The proposed framework is a mapless method for WMR.\n\n\nFindings\nThe authors present experimental results with a mobile robot for obstacle avoidance in indoor environments crowded with obstacles, such as chairs and pedestrians. The results show that the proposed hybrid obstacle avoidance method can satisfy the application requirements of mobile robots in unstructured environments.\n\n\nOriginality/value\nIn this study, the parameter ellipse is used to represent the area occupied by the obstacle, which takes the velocity as the parameter. Therefore, the motion direction and position of dynamic obstacles can be considered in the planning stage, which enhances the success rate of obstacle avoidance. In addition, the distance between the obstacle and robot is increased in the MPC optimization function to ensure a safe distance between the robot and the obstacle.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"1 1","pages":"94-106"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A hybrid obstacle avoidance method for mobile robot navigation in unstructured environment\",\"authors\":\"Huaidong Zhou, Pengbo Feng, Wusheng Chou\",\"doi\":\"10.1108/ir-04-2022-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nWheeled mobile robots (WMR) are the most widely used robots. Avoiding obstacles in unstructured environments, especially dynamic obstacles such as pedestrians, is a serious challenge for WMR. This paper aims to present a hybrid obstacle avoidance method that combines an informed-rapidly exploring random tree* algorithm with a three-dimensional (3D)-object detection approach and model prediction controller (MPC) to conduct obstacle perception, collision-free path planning and obstacle avoidance for WMR in unstructured environments.\\n\\n\\nDesign/methodology/approach\\nGiven a reference orientation and speed, the hybrid method uses parametric ellipses to represent obstacle expansion boundaries based on the 3D target detection results, and a collision-free reference path is planned. Then, the authors build on a model predictive control for tracking the collision-free reference path by incorporating the distance between the robot and obstacles. The proposed framework is a mapless method for WMR.\\n\\n\\nFindings\\nThe authors present experimental results with a mobile robot for obstacle avoidance in indoor environments crowded with obstacles, such as chairs and pedestrians. The results show that the proposed hybrid obstacle avoidance method can satisfy the application requirements of mobile robots in unstructured environments.\\n\\n\\nOriginality/value\\nIn this study, the parameter ellipse is used to represent the area occupied by the obstacle, which takes the velocity as the parameter. Therefore, the motion direction and position of dynamic obstacles can be considered in the planning stage, which enhances the success rate of obstacle avoidance. In addition, the distance between the obstacle and robot is increased in the MPC optimization function to ensure a safe distance between the robot and the obstacle.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":\"1 1\",\"pages\":\"94-106\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-04-2022-0102\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-04-2022-0102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
A hybrid obstacle avoidance method for mobile robot navigation in unstructured environment
Purpose
Wheeled mobile robots (WMR) are the most widely used robots. Avoiding obstacles in unstructured environments, especially dynamic obstacles such as pedestrians, is a serious challenge for WMR. This paper aims to present a hybrid obstacle avoidance method that combines an informed-rapidly exploring random tree* algorithm with a three-dimensional (3D)-object detection approach and model prediction controller (MPC) to conduct obstacle perception, collision-free path planning and obstacle avoidance for WMR in unstructured environments.
Design/methodology/approach
Given a reference orientation and speed, the hybrid method uses parametric ellipses to represent obstacle expansion boundaries based on the 3D target detection results, and a collision-free reference path is planned. Then, the authors build on a model predictive control for tracking the collision-free reference path by incorporating the distance between the robot and obstacles. The proposed framework is a mapless method for WMR.
Findings
The authors present experimental results with a mobile robot for obstacle avoidance in indoor environments crowded with obstacles, such as chairs and pedestrians. The results show that the proposed hybrid obstacle avoidance method can satisfy the application requirements of mobile robots in unstructured environments.
Originality/value
In this study, the parameter ellipse is used to represent the area occupied by the obstacle, which takes the velocity as the parameter. Therefore, the motion direction and position of dynamic obstacles can be considered in the planning stage, which enhances the success rate of obstacle avoidance. In addition, the distance between the obstacle and robot is increased in the MPC optimization function to ensure a safe distance between the robot and the obstacle.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.