Salman Ali, Muhammad Sadiq Khan, Habib Shah, Harish Garg, Abdullah Alsheddy
{"title":"BISGA:利用遗传算法从集合重新计算整个布尔值信息系统","authors":"Salman Ali, Muhammad Sadiq Khan, Habib Shah, Harish Garg, Abdullah Alsheddy","doi":"10.1155/2023/1539563","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A Boolean-valued information system (BIS) is an application of a soft set in which the data are mapped in a binary form and used in making applications not limited to decision-making, medical diagnoses, game theory, and economics. BIS may be lost for several reasons including virus attacks, improper entry, and machine errors. A concept was presented that the entire lost BIS can be regenerated from four aggregate sets through supposition. Based on that concept, this paper presents an algorithm to recalculate the entire BIS through a genetic algorithm (GA), named BISGA which is more general and easy to implement than the supposition method. A solved example is presented which explains how BISGA works. Furthermore, BISGA is implemented in Python and evaluated on both UCI benchmark datasets and randomized datasets for checking its efficiency and accuracy. Results show that the lost BIS is recovered significantly and accurately; however, the efficiency drops when the size of the BIS increases. This novel approach may help practitioners recalculate the entire lost BIS, which in turn helps in the decision-making process and conclusions.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2023 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/1539563","citationCount":"0","resultStr":"{\"title\":\"BISGA: Recalculating the Entire Boolean-Valued Information System from Aggregates Using a Genetic Algorithm\",\"authors\":\"Salman Ali, Muhammad Sadiq Khan, Habib Shah, Harish Garg, Abdullah Alsheddy\",\"doi\":\"10.1155/2023/1539563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>A Boolean-valued information system (BIS) is an application of a soft set in which the data are mapped in a binary form and used in making applications not limited to decision-making, medical diagnoses, game theory, and economics. BIS may be lost for several reasons including virus attacks, improper entry, and machine errors. A concept was presented that the entire lost BIS can be regenerated from four aggregate sets through supposition. Based on that concept, this paper presents an algorithm to recalculate the entire BIS through a genetic algorithm (GA), named BISGA which is more general and easy to implement than the supposition method. A solved example is presented which explains how BISGA works. Furthermore, BISGA is implemented in Python and evaluated on both UCI benchmark datasets and randomized datasets for checking its efficiency and accuracy. Results show that the lost BIS is recovered significantly and accurately; however, the efficiency drops when the size of the BIS increases. This novel approach may help practitioners recalculate the entire lost BIS, which in turn helps in the decision-making process and conclusions.</p>\\n </div>\",\"PeriodicalId\":50653,\"journal\":{\"name\":\"Complexity\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/1539563\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complexity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2023/1539563\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/1539563","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
BISGA: Recalculating the Entire Boolean-Valued Information System from Aggregates Using a Genetic Algorithm
A Boolean-valued information system (BIS) is an application of a soft set in which the data are mapped in a binary form and used in making applications not limited to decision-making, medical diagnoses, game theory, and economics. BIS may be lost for several reasons including virus attacks, improper entry, and machine errors. A concept was presented that the entire lost BIS can be regenerated from four aggregate sets through supposition. Based on that concept, this paper presents an algorithm to recalculate the entire BIS through a genetic algorithm (GA), named BISGA which is more general and easy to implement than the supposition method. A solved example is presented which explains how BISGA works. Furthermore, BISGA is implemented in Python and evaluated on both UCI benchmark datasets and randomized datasets for checking its efficiency and accuracy. Results show that the lost BIS is recovered significantly and accurately; however, the efficiency drops when the size of the BIS increases. This novel approach may help practitioners recalculate the entire lost BIS, which in turn helps in the decision-making process and conclusions.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.