Mitchell R. Riley , Brent M. Roeder , Wolf Zinke , Michael P. Weisend , Derek M. Eidum , Gianmarco F. Pinton , Ali O. Biliroglu , Feisal Y. Yamaner , Omer Oralkan , Robert E. Hampson , Patrick M. Connolly
{"title":"用CMUT相控阵系统激活灵长类动物额眼。","authors":"Mitchell R. Riley , Brent M. Roeder , Wolf Zinke , Michael P. Weisend , Derek M. Eidum , Gianmarco F. Pinton , Ali O. Biliroglu , Feisal Y. Yamaner , Omer Oralkan , Robert E. Hampson , Patrick M. Connolly","doi":"10.1016/j.jneumeth.2023.110009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>There are pushes toward non-invasive stimulation of neural tissues to prevent issues that arise from invasive brain recordings and stimulation. Transcranial Focused Ultrasound (TFUS) has been examined as a way to stimulate non-invasively, but previous studies have limitations in the application of TFUS. As a result, refinement is needed to improve stimulation results.</p></div><div><h3>New Method</h3><p>We utilized a custom-built capacitive micromachined ultrasonic transducer (CMUT) that would send ultrasonic waves through skin and skull to targets located in the Frontal Eye Fields (FEF) region triangulated from co-registered MRI and CT scans while a non-human primate subject was performing a discrimination behavioral task.</p></div><div><h3>Results</h3><p>We observed that the stimulation immediately caused changes in the local field potential (LFP) signal that continued until stimulation ended, at which point there was higher voltage upon the cue for the animal to saccade. This co-incided with increases in activity in the alpha band during stimulation. The activity rebounded mid-way through our electrode-shank, indicating a specific point of stimulation along the shank. We observed different LFP signals for different stimulation targets, indicating the ability to“steer” the stimulation through the transducer. We also observed a bias in first saccades towards the opposite direction.</p></div><div><h3>Conclusions</h3><p>In conclusion, we provide a new approach for non-invasive stimulation during performance of a behavioral task. With the ability to steer stimulation patterns and target using a large amount of transducers, the ability to provide non-invasive stimulation will be greatly improved for future clinical and research applications.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"402 ","pages":"Article 110009"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of primate frontal eye fields with a CMUT phased array system\",\"authors\":\"Mitchell R. Riley , Brent M. Roeder , Wolf Zinke , Michael P. Weisend , Derek M. Eidum , Gianmarco F. Pinton , Ali O. Biliroglu , Feisal Y. Yamaner , Omer Oralkan , Robert E. Hampson , Patrick M. Connolly\",\"doi\":\"10.1016/j.jneumeth.2023.110009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>There are pushes toward non-invasive stimulation of neural tissues to prevent issues that arise from invasive brain recordings and stimulation. Transcranial Focused Ultrasound (TFUS) has been examined as a way to stimulate non-invasively, but previous studies have limitations in the application of TFUS. As a result, refinement is needed to improve stimulation results.</p></div><div><h3>New Method</h3><p>We utilized a custom-built capacitive micromachined ultrasonic transducer (CMUT) that would send ultrasonic waves through skin and skull to targets located in the Frontal Eye Fields (FEF) region triangulated from co-registered MRI and CT scans while a non-human primate subject was performing a discrimination behavioral task.</p></div><div><h3>Results</h3><p>We observed that the stimulation immediately caused changes in the local field potential (LFP) signal that continued until stimulation ended, at which point there was higher voltage upon the cue for the animal to saccade. This co-incided with increases in activity in the alpha band during stimulation. The activity rebounded mid-way through our electrode-shank, indicating a specific point of stimulation along the shank. We observed different LFP signals for different stimulation targets, indicating the ability to“steer” the stimulation through the transducer. We also observed a bias in first saccades towards the opposite direction.</p></div><div><h3>Conclusions</h3><p>In conclusion, we provide a new approach for non-invasive stimulation during performance of a behavioral task. With the ability to steer stimulation patterns and target using a large amount of transducers, the ability to provide non-invasive stimulation will be greatly improved for future clinical and research applications.</p></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"402 \",\"pages\":\"Article 110009\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027023002285\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027023002285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Activation of primate frontal eye fields with a CMUT phased array system
Background
There are pushes toward non-invasive stimulation of neural tissues to prevent issues that arise from invasive brain recordings and stimulation. Transcranial Focused Ultrasound (TFUS) has been examined as a way to stimulate non-invasively, but previous studies have limitations in the application of TFUS. As a result, refinement is needed to improve stimulation results.
New Method
We utilized a custom-built capacitive micromachined ultrasonic transducer (CMUT) that would send ultrasonic waves through skin and skull to targets located in the Frontal Eye Fields (FEF) region triangulated from co-registered MRI and CT scans while a non-human primate subject was performing a discrimination behavioral task.
Results
We observed that the stimulation immediately caused changes in the local field potential (LFP) signal that continued until stimulation ended, at which point there was higher voltage upon the cue for the animal to saccade. This co-incided with increases in activity in the alpha band during stimulation. The activity rebounded mid-way through our electrode-shank, indicating a specific point of stimulation along the shank. We observed different LFP signals for different stimulation targets, indicating the ability to“steer” the stimulation through the transducer. We also observed a bias in first saccades towards the opposite direction.
Conclusions
In conclusion, we provide a new approach for non-invasive stimulation during performance of a behavioral task. With the ability to steer stimulation patterns and target using a large amount of transducers, the ability to provide non-invasive stimulation will be greatly improved for future clinical and research applications.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.