吸湿和空隙生长对电子封装失效的影响

Zhao Zhendong, L. Zhigang, Zhang Yu, Shu Xuefeng
{"title":"吸湿和空隙生长对电子封装失效的影响","authors":"Zhao Zhendong, L. Zhigang, Zhang Yu, Shu Xuefeng","doi":"10.1109/ICEPT.2008.4607128","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the combined effect of moisture absorption and void growing on the reliability of electronic packaging. Finite element simulation on a plastic PBGA package was carried out for moisture history from the moisture preconditioning (85 degC / 85 % RH for 168 h) to subsequent exposure to a lead-free soldering process, and the rule of moisture diffusion and the change of stress was found. Then, with the implementation of interface properties into the model study, the critical stress that results in the unstable void growth and the delamination at interface is significantly reduced and comparable to the magnitude of vapor pressure. Finite element results give a good guideline on the underfill material selection, and also give an insight of the failure mechanism associated with moisture absorption.","PeriodicalId":6324,"journal":{"name":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","volume":"20 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture absorption and void growing effects on failure of electronic packaging\",\"authors\":\"Zhao Zhendong, L. Zhigang, Zhang Yu, Shu Xuefeng\",\"doi\":\"10.1109/ICEPT.2008.4607128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to study the combined effect of moisture absorption and void growing on the reliability of electronic packaging. Finite element simulation on a plastic PBGA package was carried out for moisture history from the moisture preconditioning (85 degC / 85 % RH for 168 h) to subsequent exposure to a lead-free soldering process, and the rule of moisture diffusion and the change of stress was found. Then, with the implementation of interface properties into the model study, the critical stress that results in the unstable void growth and the delamination at interface is significantly reduced and comparable to the magnitude of vapor pressure. Finite element results give a good guideline on the underfill material selection, and also give an insight of the failure mechanism associated with moisture absorption.\",\"PeriodicalId\":6324,\"journal\":{\"name\":\"2008 International Conference on Electronic Packaging Technology & High Density Packaging\",\"volume\":\"20 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Electronic Packaging Technology & High Density Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT.2008.4607128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2008.4607128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究吸湿和空隙生长对电子封装可靠性的综合影响。对PBGA塑料封装进行了从湿度预处理(85℃/ 85% RH)到随后的无铅焊接过程(168h)的水分历史有限元模拟,发现了水分扩散和应力变化的规律。然后,在模型研究中引入界面特性,导致界面处不稳定空隙生长和分层的临界应力显著降低,与蒸汽压的量级相当。有限元分析结果为下填料材料的选择提供了很好的指导,同时也揭示了与吸湿有关的破坏机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moisture absorption and void growing effects on failure of electronic packaging
The purpose of this paper is to study the combined effect of moisture absorption and void growing on the reliability of electronic packaging. Finite element simulation on a plastic PBGA package was carried out for moisture history from the moisture preconditioning (85 degC / 85 % RH for 168 h) to subsequent exposure to a lead-free soldering process, and the rule of moisture diffusion and the change of stress was found. Then, with the implementation of interface properties into the model study, the critical stress that results in the unstable void growth and the delamination at interface is significantly reduced and comparable to the magnitude of vapor pressure. Finite element results give a good guideline on the underfill material selection, and also give an insight of the failure mechanism associated with moisture absorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信