{"title":"用硬焊料改进脊波导激光器的面向下键合","authors":"J. Teo, X. Shi, S. Yuan, G.Y. Li, Z. Wang","doi":"10.1109/TEPM.2008.919329","DOIUrl":null,"url":null,"abstract":"A modified face-down bonding technique of ridge-waveguide laser diodes (LDs) using 80Au20Sn solder has been performed. For ease of manufacturability, a bonding window with good bonding integrity and improved optical performance was determined. Metallographical investigation showed that the solder joint comprised of a layer of delta phase compound near the solder/heatsink interface, a layer of (Au,Ni)Sn intermetallic compound (IMC) at the solder/heatsink interface, and zeta' phase Au/Sn compound at the center of the solder joint. The delta phase shifted to the interfaces after reflow was postulated by its lower surface tension than zeta' phase Au/Sn compound. Good bonding integrity was observed with LD residues still adhering onto the bond pad after die shear testing. Scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) analyses of the fracture surface showed that the fracture occurred within the LD, at the GaAs/SiN interface. LDs bonded with this modified bonding process achieved an optical improvement of 2.5-3X compared to the unbonded LDs due to its good thermal management. These bonded LDs further exhibited good long-term reliability with no significant degradation in optical performance and no significant microstructure evolution in the solder joint after 500 thermal cycling test.","PeriodicalId":55010,"journal":{"name":"IEEE Transactions on Electronics Packaging Manufacturing","volume":"2 1","pages":"159-167"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modified Face-Down Bonding of Ridge-Waveguide Lasers Using Hard Solder\",\"authors\":\"J. Teo, X. Shi, S. Yuan, G.Y. Li, Z. Wang\",\"doi\":\"10.1109/TEPM.2008.919329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified face-down bonding technique of ridge-waveguide laser diodes (LDs) using 80Au20Sn solder has been performed. For ease of manufacturability, a bonding window with good bonding integrity and improved optical performance was determined. Metallographical investigation showed that the solder joint comprised of a layer of delta phase compound near the solder/heatsink interface, a layer of (Au,Ni)Sn intermetallic compound (IMC) at the solder/heatsink interface, and zeta' phase Au/Sn compound at the center of the solder joint. The delta phase shifted to the interfaces after reflow was postulated by its lower surface tension than zeta' phase Au/Sn compound. Good bonding integrity was observed with LD residues still adhering onto the bond pad after die shear testing. Scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) analyses of the fracture surface showed that the fracture occurred within the LD, at the GaAs/SiN interface. LDs bonded with this modified bonding process achieved an optical improvement of 2.5-3X compared to the unbonded LDs due to its good thermal management. These bonded LDs further exhibited good long-term reliability with no significant degradation in optical performance and no significant microstructure evolution in the solder joint after 500 thermal cycling test.\",\"PeriodicalId\":55010,\"journal\":{\"name\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"volume\":\"2 1\",\"pages\":\"159-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEPM.2008.919329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electronics Packaging Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEPM.2008.919329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modified Face-Down Bonding of Ridge-Waveguide Lasers Using Hard Solder
A modified face-down bonding technique of ridge-waveguide laser diodes (LDs) using 80Au20Sn solder has been performed. For ease of manufacturability, a bonding window with good bonding integrity and improved optical performance was determined. Metallographical investigation showed that the solder joint comprised of a layer of delta phase compound near the solder/heatsink interface, a layer of (Au,Ni)Sn intermetallic compound (IMC) at the solder/heatsink interface, and zeta' phase Au/Sn compound at the center of the solder joint. The delta phase shifted to the interfaces after reflow was postulated by its lower surface tension than zeta' phase Au/Sn compound. Good bonding integrity was observed with LD residues still adhering onto the bond pad after die shear testing. Scanning electron microscopy (SEM)/energy dispersive X-ray (EDX) analyses of the fracture surface showed that the fracture occurred within the LD, at the GaAs/SiN interface. LDs bonded with this modified bonding process achieved an optical improvement of 2.5-3X compared to the unbonded LDs due to its good thermal management. These bonded LDs further exhibited good long-term reliability with no significant degradation in optical performance and no significant microstructure evolution in the solder joint after 500 thermal cycling test.