非热等离子体中固体酸催化的甘油脱水及等离子体电场模拟分析

IF 1.9 4区 农林科学 Q3 CHEMISTRY, APPLIED
Lu Liu, Xiaofei Philip Ye, Ashim Datta
{"title":"非热等离子体中固体酸催化的甘油脱水及等离子体电场模拟分析","authors":"Lu Liu,&nbsp;Xiaofei Philip Ye,&nbsp;Ashim Datta","doi":"10.1002/aocs.12737","DOIUrl":null,"url":null,"abstract":"<p>Nonthermal plasma (NTP), for the first time, was integrated in glycerol dehydration reaction catalyzed by silicotungstic acid supported on mesoporous silica with argon as the carrier and discharge gas. A range of reaction temperatures (220–320°C) and NTP discharge field strengths (2.06–6.87 kV/cm) were studied for the individual and interactive effects regarding the glycerol conversion and product selectivity. Results showed that the presence of NTP always improved the glycerol conversion, and NTP increased acrolein selectivity if properly conditioned. An optimal condition of 275°C and 4.58 kV/cm NTP field strength achieved a glycerol conversion of 94.4 mol%, acrolein selectivity of 88.0 mol%, with an acrolein yield of 83.1 mol%, representing a 10% improvement in acrolein production over that conducted at the same temperature but without NTP. Results of this study will also have significant implication for other heterogeneously catalyzed dehydration reactions. Simulation of the high-voltage electric field distribution as function of NTP electrical conductivity and relative permittivity of catalyst materials also offers insight for the future design of reactors and catalysts.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycerol dehydration catalyzed by solid acid in nonthermal plasma and simulation analysis of plasma electric field\",\"authors\":\"Lu Liu,&nbsp;Xiaofei Philip Ye,&nbsp;Ashim Datta\",\"doi\":\"10.1002/aocs.12737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonthermal plasma (NTP), for the first time, was integrated in glycerol dehydration reaction catalyzed by silicotungstic acid supported on mesoporous silica with argon as the carrier and discharge gas. A range of reaction temperatures (220–320°C) and NTP discharge field strengths (2.06–6.87 kV/cm) were studied for the individual and interactive effects regarding the glycerol conversion and product selectivity. Results showed that the presence of NTP always improved the glycerol conversion, and NTP increased acrolein selectivity if properly conditioned. An optimal condition of 275°C and 4.58 kV/cm NTP field strength achieved a glycerol conversion of 94.4 mol%, acrolein selectivity of 88.0 mol%, with an acrolein yield of 83.1 mol%, representing a 10% improvement in acrolein production over that conducted at the same temperature but without NTP. Results of this study will also have significant implication for other heterogeneously catalyzed dehydration reactions. Simulation of the high-voltage electric field distribution as function of NTP electrical conductivity and relative permittivity of catalyst materials also offers insight for the future design of reactors and catalysts.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12737\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12737","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

以氩气为载体和放电气体,首次将非热等离子体(NTP)结合到介孔二氧化硅上支撑的硅钨酸催化的甘油脱水反应中。研究了一系列反应温度(220-320°C)和 NTP 放电场强(2.06-6.87 kV/cm)对甘油转化率和产品选择性的单独和交互影响。结果表明,NTP 的存在总是能提高甘油转化率,如果条件适当,NTP 还能提高丙烯醛的选择性。在 275°C 和 4.58 kV/cm NTP 场强的最佳条件下,甘油转化率为 94.4 摩尔%,丙烯醛选择性为 88.0 摩尔%,丙烯醛产量为 83.1 摩尔%,与在相同温度下但不使用 NTP 的情况相比,丙烯醛产量提高了 10%。这项研究的结果还将对其他异构催化脱水反应产生重要影响。模拟高压电场分布与 NTP 电导率和催化剂材料相对介电常数的函数关系,也为今后设计反应器和催化剂提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glycerol dehydration catalyzed by solid acid in nonthermal plasma and simulation analysis of plasma electric field

Nonthermal plasma (NTP), for the first time, was integrated in glycerol dehydration reaction catalyzed by silicotungstic acid supported on mesoporous silica with argon as the carrier and discharge gas. A range of reaction temperatures (220–320°C) and NTP discharge field strengths (2.06–6.87 kV/cm) were studied for the individual and interactive effects regarding the glycerol conversion and product selectivity. Results showed that the presence of NTP always improved the glycerol conversion, and NTP increased acrolein selectivity if properly conditioned. An optimal condition of 275°C and 4.58 kV/cm NTP field strength achieved a glycerol conversion of 94.4 mol%, acrolein selectivity of 88.0 mol%, with an acrolein yield of 83.1 mol%, representing a 10% improvement in acrolein production over that conducted at the same temperature but without NTP. Results of this study will also have significant implication for other heterogeneously catalyzed dehydration reactions. Simulation of the high-voltage electric field distribution as function of NTP electrical conductivity and relative permittivity of catalyst materials also offers insight for the future design of reactors and catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
5.00%
发文量
95
审稿时长
2.4 months
期刊介绍: The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate. JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of year­to­year, environmental, and/ or cultivar variations through use of appropriate statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信