Ling Ma, Jeremy Sherey, Doreen Palsgrove, Baowei Fei
{"title":"从高光谱图像合成数字组织学图像的条件生成对抗网络 (cGAN)。","authors":"Ling Ma, Jeremy Sherey, Doreen Palsgrove, Baowei Fei","doi":"10.1117/12.2653715","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperspectral imaging (HSI) has been demonstrated in various digital pathology applications. However, the intrinsic high dimensionality of hyperspectral images makes it difficult for pathologists to visualize the information. The aim of this study is to develop a method to transform hyperspectral images of hemoxylin & eosin (H&E)-stained slides to natural-color RGB histologic images for easy visualization. Hyperspectral images were obtained at 40× magnification with an automated microscopic imaging system and downsampled by various factors to generate data equivalent to different magnifications. High-resolution digital histologic RGB images were cropped and registered to the corresponding hyperspectral images as the ground truth. A conditional generative adversarial network (cGAN) was trained to output natural color RGB images of the histological tissue samples. The generated synthetic RGBs have similar color and sharpness to real RGBs. Image classification was implemented using the real and synthetic RGBs, respectively, with a pretrained network. The classification of tumor and normal tissue using the HSI-synthesized RGBs yielded a comparable but slightly higher accuracy and AUC than the real RGBs. The proposed method can reduce the acquisition time of two imaging modalities while giving pathologists access to the high information density of HSI and the quality visualization of RGBs. This study demonstrated that HSI may provide a potentially better alternative to current RGB-based pathologic imaging and thus make HSI a viable tool for histopathological diagnosis.</p>","PeriodicalId":55155,"journal":{"name":"Fluctuation and Noise Letters","volume":"11 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Conditional Generative Adversarial Network (cGAN) for Synthesis of Digital Histologic Images from Hyperspectral Images.\",\"authors\":\"Ling Ma, Jeremy Sherey, Doreen Palsgrove, Baowei Fei\",\"doi\":\"10.1117/12.2653715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hyperspectral imaging (HSI) has been demonstrated in various digital pathology applications. However, the intrinsic high dimensionality of hyperspectral images makes it difficult for pathologists to visualize the information. The aim of this study is to develop a method to transform hyperspectral images of hemoxylin & eosin (H&E)-stained slides to natural-color RGB histologic images for easy visualization. Hyperspectral images were obtained at 40× magnification with an automated microscopic imaging system and downsampled by various factors to generate data equivalent to different magnifications. High-resolution digital histologic RGB images were cropped and registered to the corresponding hyperspectral images as the ground truth. A conditional generative adversarial network (cGAN) was trained to output natural color RGB images of the histological tissue samples. The generated synthetic RGBs have similar color and sharpness to real RGBs. Image classification was implemented using the real and synthetic RGBs, respectively, with a pretrained network. The classification of tumor and normal tissue using the HSI-synthesized RGBs yielded a comparable but slightly higher accuracy and AUC than the real RGBs. The proposed method can reduce the acquisition time of two imaging modalities while giving pathologists access to the high information density of HSI and the quality visualization of RGBs. This study demonstrated that HSI may provide a potentially better alternative to current RGB-based pathologic imaging and thus make HSI a viable tool for histopathological diagnosis.</p>\",\"PeriodicalId\":55155,\"journal\":{\"name\":\"Fluctuation and Noise Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluctuation and Noise Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2653715\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluctuation and Noise Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2653715","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Conditional Generative Adversarial Network (cGAN) for Synthesis of Digital Histologic Images from Hyperspectral Images.
Hyperspectral imaging (HSI) has been demonstrated in various digital pathology applications. However, the intrinsic high dimensionality of hyperspectral images makes it difficult for pathologists to visualize the information. The aim of this study is to develop a method to transform hyperspectral images of hemoxylin & eosin (H&E)-stained slides to natural-color RGB histologic images for easy visualization. Hyperspectral images were obtained at 40× magnification with an automated microscopic imaging system and downsampled by various factors to generate data equivalent to different magnifications. High-resolution digital histologic RGB images were cropped and registered to the corresponding hyperspectral images as the ground truth. A conditional generative adversarial network (cGAN) was trained to output natural color RGB images of the histological tissue samples. The generated synthetic RGBs have similar color and sharpness to real RGBs. Image classification was implemented using the real and synthetic RGBs, respectively, with a pretrained network. The classification of tumor and normal tissue using the HSI-synthesized RGBs yielded a comparable but slightly higher accuracy and AUC than the real RGBs. The proposed method can reduce the acquisition time of two imaging modalities while giving pathologists access to the high information density of HSI and the quality visualization of RGBs. This study demonstrated that HSI may provide a potentially better alternative to current RGB-based pathologic imaging and thus make HSI a viable tool for histopathological diagnosis.
期刊介绍:
Fluctuation and Noise Letters (FNL) is unique. It is the only specialist journal for fluctuations and noise, and it covers that topic throughout the whole of science in a completely interdisciplinary way. High standards of refereeing and editorial judgment are guaranteed by the selection of Editors from among the leading scientists of the field.
FNL places equal emphasis on both fundamental and applied science and the name "Letters" is to indicate speed of publication, rather than a limitation on the lengths of papers. The journal uses on-line submission and provides for immediate on-line publication of accepted papers.
FNL is interested in interdisciplinary articles on random fluctuations, quite generally. For example: noise enhanced phenomena including stochastic resonance; 1/f noise; shot noise; fluctuation-dissipation; cardiovascular dynamics; ion channels; single molecules; neural systems; quantum fluctuations; quantum computation; classical and quantum information; statistical physics; degradation and aging phenomena; percolation systems; fluctuations in social systems; traffic; the stock market; environment and climate; etc.