{"title":"采用视觉伺服控制的自动微装配","authors":"Lidai Wang, J. Mills, W. Cleghorn","doi":"10.1109/TEPM.2008.926118","DOIUrl":null,"url":null,"abstract":"We propose an automatic microassembly method that can be used to construct three-dimensional microelectromechanical system (MEMS) structures. A six degree-of-freedom micromanipulator, equipped with a passive microgripper, is employed to grasp, manipulate, and join the micropart using visual feedback from an optical microscope. The proposed process utilizes a two-stage alignment strategy to perform the micro-grasping and micro-joining tasks. Using a vision-based localization method, the Cartesian coordinates of the manipulated micropart in three-dimensional space are determined. Further, a vision-based contact sensor determines the contact state between two micro-components in three dimensions to facilitating the micro-joining tasks. Visual servo control is used for accurate position feedback in three Cartesian coordinates during microassembly tasks. The necessary steps towards construction of complex three-dimensional MEMS devices, i.e., grasping a micropart, manipulating it, joining it to another micropart, and finally releasing it from the microgripper, have been successfully carried out using a six degree-of-freedom micromanipulator. Experiments demonstrate both the efficiency and validity of the proposed automatic assembly approach.","PeriodicalId":55010,"journal":{"name":"IEEE Transactions on Electronics Packaging Manufacturing","volume":"43 1","pages":"316-325"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Automatic Microassembly Using Visual Servo Control\",\"authors\":\"Lidai Wang, J. Mills, W. Cleghorn\",\"doi\":\"10.1109/TEPM.2008.926118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an automatic microassembly method that can be used to construct three-dimensional microelectromechanical system (MEMS) structures. A six degree-of-freedom micromanipulator, equipped with a passive microgripper, is employed to grasp, manipulate, and join the micropart using visual feedback from an optical microscope. The proposed process utilizes a two-stage alignment strategy to perform the micro-grasping and micro-joining tasks. Using a vision-based localization method, the Cartesian coordinates of the manipulated micropart in three-dimensional space are determined. Further, a vision-based contact sensor determines the contact state between two micro-components in three dimensions to facilitating the micro-joining tasks. Visual servo control is used for accurate position feedback in three Cartesian coordinates during microassembly tasks. The necessary steps towards construction of complex three-dimensional MEMS devices, i.e., grasping a micropart, manipulating it, joining it to another micropart, and finally releasing it from the microgripper, have been successfully carried out using a six degree-of-freedom micromanipulator. Experiments demonstrate both the efficiency and validity of the proposed automatic assembly approach.\",\"PeriodicalId\":55010,\"journal\":{\"name\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"volume\":\"43 1\",\"pages\":\"316-325\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEPM.2008.926118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electronics Packaging Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEPM.2008.926118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Microassembly Using Visual Servo Control
We propose an automatic microassembly method that can be used to construct three-dimensional microelectromechanical system (MEMS) structures. A six degree-of-freedom micromanipulator, equipped with a passive microgripper, is employed to grasp, manipulate, and join the micropart using visual feedback from an optical microscope. The proposed process utilizes a two-stage alignment strategy to perform the micro-grasping and micro-joining tasks. Using a vision-based localization method, the Cartesian coordinates of the manipulated micropart in three-dimensional space are determined. Further, a vision-based contact sensor determines the contact state between two micro-components in three dimensions to facilitating the micro-joining tasks. Visual servo control is used for accurate position feedback in three Cartesian coordinates during microassembly tasks. The necessary steps towards construction of complex three-dimensional MEMS devices, i.e., grasping a micropart, manipulating it, joining it to another micropart, and finally releasing it from the microgripper, have been successfully carried out using a six degree-of-freedom micromanipulator. Experiments demonstrate both the efficiency and validity of the proposed automatic assembly approach.