直接激光刻写制备ISM波段柔性半透明天线

IF 0.4 4区 化学 Q4 POLYMER SCIENCE
A. F. M. Moshiur Rahman, Akira Watanabe
{"title":"直接激光刻写制备ISM波段柔性半透明天线","authors":"A. F. M. Moshiur Rahman, Akira Watanabe","doi":"10.2494/photopolymer.34.149","DOIUrl":null,"url":null,"abstract":"In this paper, a flexible and semi-transparent antenna is proposed having impedance bandwidth of 110 MHz (from 2.45 GHz to 2.56 GHz) of ISM band which covers the most popular (2.4 GHz) for Wi-Fi application all over the world. A simple dipole shape rectangular ring antenna with two extended edge on the opposite sides was prepared by laser direct writing on an Au sputtered PET film. The center part of the antenna was kept empty and transparent intentionally to incorporate with either a planar capacitor for microwave wireless charging or to integrate this antenna with a solar cell in future. The compact, miniature and flexibility of the antenna are suitable for easy integration in any smart devices or clothing for wireless charging to implement self-powered sensors. The performance of the patch antenna is evaluated using return loss (S11) parameter analysis. A measured reflection coefficient and simulated current distribution along with radiation pattern demonstrate that the fabricated antenna is suitable for Wi-Fi application.","PeriodicalId":16810,"journal":{"name":"Journal of Photopolymer Science and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible and Semi-Transparent Antenna for ISM Band Fabricated by Direct Laser Writing\",\"authors\":\"A. F. M. Moshiur Rahman, Akira Watanabe\",\"doi\":\"10.2494/photopolymer.34.149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a flexible and semi-transparent antenna is proposed having impedance bandwidth of 110 MHz (from 2.45 GHz to 2.56 GHz) of ISM band which covers the most popular (2.4 GHz) for Wi-Fi application all over the world. A simple dipole shape rectangular ring antenna with two extended edge on the opposite sides was prepared by laser direct writing on an Au sputtered PET film. The center part of the antenna was kept empty and transparent intentionally to incorporate with either a planar capacitor for microwave wireless charging or to integrate this antenna with a solar cell in future. The compact, miniature and flexibility of the antenna are suitable for easy integration in any smart devices or clothing for wireless charging to implement self-powered sensors. The performance of the patch antenna is evaluated using return loss (S11) parameter analysis. A measured reflection coefficient and simulated current distribution along with radiation pattern demonstrate that the fabricated antenna is suitable for Wi-Fi application.\",\"PeriodicalId\":16810,\"journal\":{\"name\":\"Journal of Photopolymer Science and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photopolymer Science and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2494/photopolymer.34.149\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photopolymer Science and Technology","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2494/photopolymer.34.149","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种柔性半透明天线,其阻抗带宽为110 MHz (2.45 GHz至2.56 GHz)的ISM频段,该频段覆盖了全球最流行的Wi-Fi应用(2.4 GHz)。采用激光直写的方法,在Au溅射PET薄膜上制备了一个简单的偶极子形状矩形环形天线。天线的中心部分故意保持空和透明,以便与用于微波无线充电的平面电容器或将来将该天线与太阳能电池集成在一起。天线的紧凑,微型和灵活性适合于轻松集成在任何智能设备或服装中进行无线充电,以实现自供电传感器。利用回波损耗(S11)参数分析对贴片天线的性能进行了评价。实测的反射系数和模拟的电流随辐射方向图的分布表明,该天线适合于Wi-Fi应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and Semi-Transparent Antenna for ISM Band Fabricated by Direct Laser Writing
In this paper, a flexible and semi-transparent antenna is proposed having impedance bandwidth of 110 MHz (from 2.45 GHz to 2.56 GHz) of ISM band which covers the most popular (2.4 GHz) for Wi-Fi application all over the world. A simple dipole shape rectangular ring antenna with two extended edge on the opposite sides was prepared by laser direct writing on an Au sputtered PET film. The center part of the antenna was kept empty and transparent intentionally to incorporate with either a planar capacitor for microwave wireless charging or to integrate this antenna with a solar cell in future. The compact, miniature and flexibility of the antenna are suitable for easy integration in any smart devices or clothing for wireless charging to implement self-powered sensors. The performance of the patch antenna is evaluated using return loss (S11) parameter analysis. A measured reflection coefficient and simulated current distribution along with radiation pattern demonstrate that the fabricated antenna is suitable for Wi-Fi application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
25.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Journal of Photopolymer Science and Technology is devoted to the publication of articles on the scientific progress and the technical development of photopolymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信