Maria Sabani, I. Savvas, D. Poulakis, G. Garani, Georgios C. Makris
{"title":"安全量子计算时代基于格的密码系统的评估与比较","authors":"Maria Sabani, I. Savvas, D. Poulakis, G. Garani, Georgios C. Makris","doi":"10.3390/electronics12122643","DOIUrl":null,"url":null,"abstract":"The rapid development of quantum computing devices promises powerful machines with the potential to confront a variety of problems that conventional computers cannot. Therefore, quantum computers generate new threats at unprecedented speed and scale and specifically pose an enormous threat to encryption. Lattice-based cryptography is regarded as the rival to a quantum computer attack and the future of post-quantum cryptography. So, cryptographic protocols based on lattices have a variety of benefits, such as security, efficiency, lower energy consumption, and speed. In this work, we study the most well-known lattice-based cryptosystems while a systematic evaluation and comparison is also presented.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"39 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation and Comparison of Lattice-Based Cryptosystems for a Secure Quantum Computing Era\",\"authors\":\"Maria Sabani, I. Savvas, D. Poulakis, G. Garani, Georgios C. Makris\",\"doi\":\"10.3390/electronics12122643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of quantum computing devices promises powerful machines with the potential to confront a variety of problems that conventional computers cannot. Therefore, quantum computers generate new threats at unprecedented speed and scale and specifically pose an enormous threat to encryption. Lattice-based cryptography is regarded as the rival to a quantum computer attack and the future of post-quantum cryptography. So, cryptographic protocols based on lattices have a variety of benefits, such as security, efficiency, lower energy consumption, and speed. In this work, we study the most well-known lattice-based cryptosystems while a systematic evaluation and comparison is also presented.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics12122643\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics12122643","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Evaluation and Comparison of Lattice-Based Cryptosystems for a Secure Quantum Computing Era
The rapid development of quantum computing devices promises powerful machines with the potential to confront a variety of problems that conventional computers cannot. Therefore, quantum computers generate new threats at unprecedented speed and scale and specifically pose an enormous threat to encryption. Lattice-based cryptography is regarded as the rival to a quantum computer attack and the future of post-quantum cryptography. So, cryptographic protocols based on lattices have a variety of benefits, such as security, efficiency, lower energy consumption, and speed. In this work, we study the most well-known lattice-based cryptosystems while a systematic evaluation and comparison is also presented.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.