满足热增强型球栅阵列封装(TEBGA)的热性能和可靠性挑战

Q. Qi
{"title":"满足热增强型球栅阵列封装(TEBGA)的热性能和可靠性挑战","authors":"Q. Qi","doi":"10.1109/ICEPT.2008.4606945","DOIUrl":null,"url":null,"abstract":"For devices with challenging power management requirement, thermally enhanced ball grid array package (TEBGA) offers a good solution, where the device is attached to a heat spreader, usually made of copper, with a thermally conductive epoxy to ensure a good conductive path for heat to escape from the die. The top die surface and bonding wires are covered with an overmolding compound for environmental protection such that heat dissipation is typically limited in that direction. However, TEBGA is not without its unique challenges. In this paper, we present a study on the challenges of meeting the thermal performance and reliability requirements for a ASIC packaged with TEBGA. A localized deformation or ldquodimplerdquo of the TEBGA package is discovered during the package assembly process, where the heat-spreader is noted to have deformed under the die shadow, which results in a circular shaped indentation. This raises concerns about the impact on the thermal performance of the subsequent package to heat sink interface when it is integrated into the system. Solution to this potential problem rests on balancing thermal performance, reducing package stress level & understanding potential long term package reliability. Deformation of the package with each process step will be first described and particular attention will be given to the change of package profile after the die attach process; then a finite element analysis of the stress and deformation of the die attach process is discussed and important parameters affecting the deformation and stress are shown; moreover, a thermal resistance model assessing the thermal budget for this package in a system environment is reviewed and confirmation with numerical analysis & validation by experimental analysis are highlighted; furthermore, an interactive analysis is subsequently performed based on the FEA model for package stress/deformation and thermal resistance model to optimize the packaging solution; finally, balanced solution through this interactive optimization process is summarized and demonstrated in the manufacturing process.","PeriodicalId":6324,"journal":{"name":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","volume":"12 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Meeting thermal performance and reliability challenges for a thermally enhanced ball grid array package (TEBGA)\",\"authors\":\"Q. Qi\",\"doi\":\"10.1109/ICEPT.2008.4606945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For devices with challenging power management requirement, thermally enhanced ball grid array package (TEBGA) offers a good solution, where the device is attached to a heat spreader, usually made of copper, with a thermally conductive epoxy to ensure a good conductive path for heat to escape from the die. The top die surface and bonding wires are covered with an overmolding compound for environmental protection such that heat dissipation is typically limited in that direction. However, TEBGA is not without its unique challenges. In this paper, we present a study on the challenges of meeting the thermal performance and reliability requirements for a ASIC packaged with TEBGA. A localized deformation or ldquodimplerdquo of the TEBGA package is discovered during the package assembly process, where the heat-spreader is noted to have deformed under the die shadow, which results in a circular shaped indentation. This raises concerns about the impact on the thermal performance of the subsequent package to heat sink interface when it is integrated into the system. Solution to this potential problem rests on balancing thermal performance, reducing package stress level & understanding potential long term package reliability. Deformation of the package with each process step will be first described and particular attention will be given to the change of package profile after the die attach process; then a finite element analysis of the stress and deformation of the die attach process is discussed and important parameters affecting the deformation and stress are shown; moreover, a thermal resistance model assessing the thermal budget for this package in a system environment is reviewed and confirmation with numerical analysis & validation by experimental analysis are highlighted; furthermore, an interactive analysis is subsequently performed based on the FEA model for package stress/deformation and thermal resistance model to optimize the packaging solution; finally, balanced solution through this interactive optimization process is summarized and demonstrated in the manufacturing process.\",\"PeriodicalId\":6324,\"journal\":{\"name\":\"2008 International Conference on Electronic Packaging Technology & High Density Packaging\",\"volume\":\"12 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Electronic Packaging Technology & High Density Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT.2008.4606945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2008.4606945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于具有挑战性的电源管理要求的器件,热增强球栅阵列封装(TEBGA)提供了一个很好的解决方案,其中器件连接到散热器,通常由铜制成,带有导热环氧树脂,以确保热从模具中逸出的良好传导路径。上模表面和粘接线覆盖有一种用于环保的复模化合物,使得该方向的散热通常受到限制。然而,TEBGA并非没有其独特的挑战。在本文中,我们研究了满足TEBGA封装的ASIC的热性能和可靠性要求的挑战。在封装组装过程中,发现TEBGA封装的局部变形或不对称,其中散热片在模影下变形,导致圆形压痕。这引起了对后续封装到散热器接口的热性能的影响的关注,当它集成到系统中。这个潜在问题的解决方案取决于平衡热性能,降低封装压力水平和了解潜在的长期封装可靠性。首先描述每个工艺步骤的包装变形,并特别注意在模具附着过程后包装轮廓的变化;然后对模具附着过程的应力和变形进行了有限元分析,给出了影响变形和应力的重要参数;此外,还回顾了评估该封装在系统环境中的热预算的热阻模型,并强调了数值分析的验证和实验分析的验证;在此基础上,基于包装应力/变形有限元模型和热阻模型进行交互分析,优化包装方案;最后总结了通过该交互优化过程的平衡解决方案,并在制造过程中进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meeting thermal performance and reliability challenges for a thermally enhanced ball grid array package (TEBGA)
For devices with challenging power management requirement, thermally enhanced ball grid array package (TEBGA) offers a good solution, where the device is attached to a heat spreader, usually made of copper, with a thermally conductive epoxy to ensure a good conductive path for heat to escape from the die. The top die surface and bonding wires are covered with an overmolding compound for environmental protection such that heat dissipation is typically limited in that direction. However, TEBGA is not without its unique challenges. In this paper, we present a study on the challenges of meeting the thermal performance and reliability requirements for a ASIC packaged with TEBGA. A localized deformation or ldquodimplerdquo of the TEBGA package is discovered during the package assembly process, where the heat-spreader is noted to have deformed under the die shadow, which results in a circular shaped indentation. This raises concerns about the impact on the thermal performance of the subsequent package to heat sink interface when it is integrated into the system. Solution to this potential problem rests on balancing thermal performance, reducing package stress level & understanding potential long term package reliability. Deformation of the package with each process step will be first described and particular attention will be given to the change of package profile after the die attach process; then a finite element analysis of the stress and deformation of the die attach process is discussed and important parameters affecting the deformation and stress are shown; moreover, a thermal resistance model assessing the thermal budget for this package in a system environment is reviewed and confirmation with numerical analysis & validation by experimental analysis are highlighted; furthermore, an interactive analysis is subsequently performed based on the FEA model for package stress/deformation and thermal resistance model to optimize the packaging solution; finally, balanced solution through this interactive optimization process is summarized and demonstrated in the manufacturing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信