{"title":"在Si上使用AlGaN/GaN HEMT的异质外延生长和功率电子学","authors":"T. Egawa","doi":"10.1109/IEDM.2012.6479112","DOIUrl":null,"url":null,"abstract":"Developments of heteroepitaxial growth and characteristics of an AlGaN/GaN HEMT on a Si substrate are reported. High-temperature-grown AlGaN/AlN intermediate layers and GaN/AlN strained layer superlattice are effective in improving the crystallinity of a following GaN layer and for growing thick device structure on Si, which resulted in obtaining high-breakdown voltage. The AlGaN/GaN HEMT on Si exhibited the breakdown voltage as high as 1402 V with a state-of-the-art figure-of-merit (FOM = BV<sup>2</sup>/R<sub>on</sub>) of 2.6×10<sup>8</sup> V<sup>2</sup>Ω<sup>-1</sup>cm<sup>-2</sup>.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Heteroepitaxial growth and power electronics using AlGaN/GaN HEMT on Si\",\"authors\":\"T. Egawa\",\"doi\":\"10.1109/IEDM.2012.6479112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developments of heteroepitaxial growth and characteristics of an AlGaN/GaN HEMT on a Si substrate are reported. High-temperature-grown AlGaN/AlN intermediate layers and GaN/AlN strained layer superlattice are effective in improving the crystallinity of a following GaN layer and for growing thick device structure on Si, which resulted in obtaining high-breakdown voltage. The AlGaN/GaN HEMT on Si exhibited the breakdown voltage as high as 1402 V with a state-of-the-art figure-of-merit (FOM = BV<sup>2</sup>/R<sub>on</sub>) of 2.6×10<sup>8</sup> V<sup>2</sup>Ω<sup>-1</sup>cm<sup>-2</sup>.\",\"PeriodicalId\":6376,\"journal\":{\"name\":\"2012 International Electron Devices Meeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2012.6479112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heteroepitaxial growth and power electronics using AlGaN/GaN HEMT on Si
Developments of heteroepitaxial growth and characteristics of an AlGaN/GaN HEMT on a Si substrate are reported. High-temperature-grown AlGaN/AlN intermediate layers and GaN/AlN strained layer superlattice are effective in improving the crystallinity of a following GaN layer and for growing thick device structure on Si, which resulted in obtaining high-breakdown voltage. The AlGaN/GaN HEMT on Si exhibited the breakdown voltage as high as 1402 V with a state-of-the-art figure-of-merit (FOM = BV2/Ron) of 2.6×108 V2Ω-1cm-2.