下填料模型在凸点布置和点胶工艺设计中的应用

Sin-Wei Peng, W. Young
{"title":"下填料模型在凸点布置和点胶工艺设计中的应用","authors":"Sin-Wei Peng, W. Young","doi":"10.1109/TEPM.2010.2044648","DOIUrl":null,"url":null,"abstract":"Along with the technology advance, the applications of flip chip have the tendency toward lower profile, lighter weight, and higher density. Due to the mismatch of the coefficients of thermal expansion (CTE) between the chip and substrate, the solder joints tend to fail under high thermal stresses. In order to enhance the reliability of the solder joints, underfill encapsulation is filled into the gap between the chip and substrate around the solder joints by capillary force. It is crucial for flip-chip technology to speed up the encapsulation process and avoid the formation of voids at the same time. A finite-element model was developed to simulate the underfill flow in our laboratory. In this paper, further verification of the underfill model is performed to confirm its feasibility. A model is proposed to design an efficient process for encapsulant dispensing based on the underfill model. Application of the model is also conducted to investigate the effect of different bump designs on the dispensing process.","PeriodicalId":55010,"journal":{"name":"IEEE Transactions on Electronics Packaging Manufacturing","volume":"44 1","pages":"122-128"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Application of the Underfill Model to Bump Arrangement and Dispensing Process Design\",\"authors\":\"Sin-Wei Peng, W. Young\",\"doi\":\"10.1109/TEPM.2010.2044648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the technology advance, the applications of flip chip have the tendency toward lower profile, lighter weight, and higher density. Due to the mismatch of the coefficients of thermal expansion (CTE) between the chip and substrate, the solder joints tend to fail under high thermal stresses. In order to enhance the reliability of the solder joints, underfill encapsulation is filled into the gap between the chip and substrate around the solder joints by capillary force. It is crucial for flip-chip technology to speed up the encapsulation process and avoid the formation of voids at the same time. A finite-element model was developed to simulate the underfill flow in our laboratory. In this paper, further verification of the underfill model is performed to confirm its feasibility. A model is proposed to design an efficient process for encapsulant dispensing based on the underfill model. Application of the model is also conducted to investigate the effect of different bump designs on the dispensing process.\",\"PeriodicalId\":55010,\"journal\":{\"name\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"volume\":\"44 1\",\"pages\":\"122-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEPM.2010.2044648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electronics Packaging Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEPM.2010.2044648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着技术的进步,倒装芯片的应用有向低轮廓、轻重量和高密度发展的趋势。由于芯片和衬底之间的热膨胀系数(CTE)不匹配,焊点在高热应力下容易失效。为了提高焊点的可靠性,利用毛细管力在焊点周围的芯片与衬底之间的空隙中填充下填充封装。对于倒装芯片技术来说,如何在加快封装过程的同时避免空隙的形成是至关重要的。在实验室建立了模拟下填土流动的有限元模型。本文对下填模型进行了进一步的验证,以证实其可行性。提出了一种基于下填充模型的高效灌胶点胶流程设计模型。应用该模型研究了不同凸点设计对点胶过程的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Underfill Model to Bump Arrangement and Dispensing Process Design
Along with the technology advance, the applications of flip chip have the tendency toward lower profile, lighter weight, and higher density. Due to the mismatch of the coefficients of thermal expansion (CTE) between the chip and substrate, the solder joints tend to fail under high thermal stresses. In order to enhance the reliability of the solder joints, underfill encapsulation is filled into the gap between the chip and substrate around the solder joints by capillary force. It is crucial for flip-chip technology to speed up the encapsulation process and avoid the formation of voids at the same time. A finite-element model was developed to simulate the underfill flow in our laboratory. In this paper, further verification of the underfill model is performed to confirm its feasibility. A model is proposed to design an efficient process for encapsulant dispensing based on the underfill model. Application of the model is also conducted to investigate the effect of different bump designs on the dispensing process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信