{"title":"选定的新型植物生物活性物质对改善人原代细胞肠上皮受损肠道屏障功能的影响","authors":"D. Bolster, L. Chae, J. Klinken, S. Kalgaonkar","doi":"10.31665/jfb.2022.18324","DOIUrl":null,"url":null,"abstract":"Gut barrier function is compromised in the obese state. The N-trans caffeoyltyramine (NCT) and N-trans feruloyltyramine (NFT), two naturally occurring bioactive compounds in hemp hulls, identified using in silico approaches, have the potential to improve gut barrier function and their effects were studied here in vitro. Proliferative human transverse colon epithelial cells were plated and co-cultured with tumor necrosis factor (TNF) along with NCT, NFT or NCT/NFT (2.2 ratio) post-differentiation, over a 48-hour period to induce inflammation and to observe the effects of NCT and NFT. A decrease in transepithelial electrical resistance (TEER) and increase in the intestinal permeability were observed with increased addition of TNF. Co-administration of NCT and NFT demonstrated a dose-dependent and statistically significant reversal of impaired TEER and intestinal permeability. NCT and NFT demonstrated a physiologically relevant reversal of impaired gut barrier function in the setting of inflammation via significant improvement in TEER and percent permeability.","PeriodicalId":15882,"journal":{"name":"Journal of Food Bioactives","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Impact of selected novel plant bioactives on improvement of impaired gut barrier function using human primary cell intestinal epithelium\",\"authors\":\"D. Bolster, L. Chae, J. Klinken, S. Kalgaonkar\",\"doi\":\"10.31665/jfb.2022.18324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gut barrier function is compromised in the obese state. The N-trans caffeoyltyramine (NCT) and N-trans feruloyltyramine (NFT), two naturally occurring bioactive compounds in hemp hulls, identified using in silico approaches, have the potential to improve gut barrier function and their effects were studied here in vitro. Proliferative human transverse colon epithelial cells were plated and co-cultured with tumor necrosis factor (TNF) along with NCT, NFT or NCT/NFT (2.2 ratio) post-differentiation, over a 48-hour period to induce inflammation and to observe the effects of NCT and NFT. A decrease in transepithelial electrical resistance (TEER) and increase in the intestinal permeability were observed with increased addition of TNF. Co-administration of NCT and NFT demonstrated a dose-dependent and statistically significant reversal of impaired TEER and intestinal permeability. NCT and NFT demonstrated a physiologically relevant reversal of impaired gut barrier function in the setting of inflammation via significant improvement in TEER and percent permeability.\",\"PeriodicalId\":15882,\"journal\":{\"name\":\"Journal of Food Bioactives\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Bioactives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31665/jfb.2022.18324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Bioactives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31665/jfb.2022.18324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of selected novel plant bioactives on improvement of impaired gut barrier function using human primary cell intestinal epithelium
Gut barrier function is compromised in the obese state. The N-trans caffeoyltyramine (NCT) and N-trans feruloyltyramine (NFT), two naturally occurring bioactive compounds in hemp hulls, identified using in silico approaches, have the potential to improve gut barrier function and their effects were studied here in vitro. Proliferative human transverse colon epithelial cells were plated and co-cultured with tumor necrosis factor (TNF) along with NCT, NFT or NCT/NFT (2.2 ratio) post-differentiation, over a 48-hour period to induce inflammation and to observe the effects of NCT and NFT. A decrease in transepithelial electrical resistance (TEER) and increase in the intestinal permeability were observed with increased addition of TNF. Co-administration of NCT and NFT demonstrated a dose-dependent and statistically significant reversal of impaired TEER and intestinal permeability. NCT and NFT demonstrated a physiologically relevant reversal of impaired gut barrier function in the setting of inflammation via significant improvement in TEER and percent permeability.