Hsu-Hsiang Cheng, Sung-Cheng Lo, Yi-Jia Wang, Yu-Chen Chen, W. Lai, Meng-Lin Hsieh, Mingching Wu, W. Fang
{"title":"压电微扬声器采用新型驱动方法和电极设计提高频率范围","authors":"Hsu-Hsiang Cheng, Sung-Cheng Lo, Yi-Jia Wang, Yu-Chen Chen, W. Lai, Meng-Lin Hsieh, Mingching Wu, W. Fang","doi":"10.1109/MEMS46641.2020.9056196","DOIUrl":null,"url":null,"abstract":"This study presents a novel approach and the electrode design to drive two particular vibration modes of the structure to improve the frequency range of the piezoelectric MEMS microspeaker. Extending the advantage of the spring-diaphragm structure to enhance low-frequency sound pressure level (SPL) in the previous work [1], the proposed design in this study not only sustains low-frequency SPL by the piston mode of the diaphragm actuating by the edge electrodes, but also further increases high-frequency SPL to improve frequency range by the drum mode excited by the central electrode on the diaphragm. Measurements in the standard ear simulator depict that the proposed design has a significant SPL enhancement after the first resonant peak and meanwhile maintains the performance at low frequencies. From 2.6 kHz ∼ 20 kHz, the proposed design shows an improvement of more than 15 dB SPL over the reference design.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"166 1","pages":"513-516"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement\",\"authors\":\"Hsu-Hsiang Cheng, Sung-Cheng Lo, Yi-Jia Wang, Yu-Chen Chen, W. Lai, Meng-Lin Hsieh, Mingching Wu, W. Fang\",\"doi\":\"10.1109/MEMS46641.2020.9056196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel approach and the electrode design to drive two particular vibration modes of the structure to improve the frequency range of the piezoelectric MEMS microspeaker. Extending the advantage of the spring-diaphragm structure to enhance low-frequency sound pressure level (SPL) in the previous work [1], the proposed design in this study not only sustains low-frequency SPL by the piston mode of the diaphragm actuating by the edge electrodes, but also further increases high-frequency SPL to improve frequency range by the drum mode excited by the central electrode on the diaphragm. Measurements in the standard ear simulator depict that the proposed design has a significant SPL enhancement after the first resonant peak and meanwhile maintains the performance at low frequencies. From 2.6 kHz ∼ 20 kHz, the proposed design shows an improvement of more than 15 dB SPL over the reference design.\",\"PeriodicalId\":6776,\"journal\":{\"name\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"166 1\",\"pages\":\"513-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS46641.2020.9056196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS46641.2020.9056196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
本研究提出了一种新的方法和电极设计来驱动结构的两种特定振动模式,以提高压电MEMS微扬声器的频率范围。本文的设计延续了前人研究[1]中簧膜结构提高低频声压级的优势,既通过边缘电极驱动膜片的活塞模式维持低频声压级,又通过膜片上中心电极激励的鼓式模式进一步提高高频声压级以提高频率范围。在标准耳模拟器中的测量表明,所提出的设计在第一个谐振峰之后具有显著的声压级增强,同时保持了低频的性能。在2.6 kHz ~ 20 kHz范围内,所提出的设计比参考设计提高了15 dB SPL以上。
Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement
This study presents a novel approach and the electrode design to drive two particular vibration modes of the structure to improve the frequency range of the piezoelectric MEMS microspeaker. Extending the advantage of the spring-diaphragm structure to enhance low-frequency sound pressure level (SPL) in the previous work [1], the proposed design in this study not only sustains low-frequency SPL by the piston mode of the diaphragm actuating by the edge electrodes, but also further increases high-frequency SPL to improve frequency range by the drum mode excited by the central electrode on the diaphragm. Measurements in the standard ear simulator depict that the proposed design has a significant SPL enhancement after the first resonant peak and meanwhile maintains the performance at low frequencies. From 2.6 kHz ∼ 20 kHz, the proposed design shows an improvement of more than 15 dB SPL over the reference design.