{"title":"多壁碳纳米管富集去除PCB板中重金属的研究","authors":"L. Hua, H. Hou","doi":"10.1109/ICEPT.2008.4607151","DOIUrl":null,"url":null,"abstract":"PCB board is an important part of electronic and electrical equipment. In place of piling e-wastes, much of heavy metals in PCB boards percolate into soil, air, river etc. which is a great threaten to environment. In order to removal the hazardous materials for WEEE directive, in this paper, a study on enrichment of lead, cadmium ions by multiwalled carbon nanotubes (MWCNTs) as a solid-phase extraction adsorbent was employed. ICP-OES was used to determine the adsorbed concentrations. Some valuable guidelines can be drawn from the following discussions. MWCNTs has proven to be a promising materials for the removal of contaminants owing to its amazing effects of enrichment, the objective content was concentrated about 50-100 fold, and limit of detection (LOD) was 0.5 mugmiddotkg-1 for Pb, 0.2 mugmiddotkg-1 for Cd. The ion exchange or hydrogen binding mechanism can very well explain the heavy metals such as Pb, Cd adsorption onto CNTs. Sorption can be modeled by Freundlich isotherms from which thermodynamic parameters such as free energy change (DeltaG), enthalpy change (DeltaH), and entropy change (DeltaS) can be calculated. DeltaG<0, DeltaS>0 indicated the process to be feasible and spontaneous nature. DeltaH>0 suggested that the process to be an endothermic nature. Enrichment can be influenced by factors as contact time, temperature, pH and initial concentration of adsorbate, etc. Sorption increased with increasing contact time, and temperature, initial concentration of adsorbate. For each of analyte, there is a neutral pH beyond which MWCNTs will be either positively or negatively charged. Desorption studies have shown the applicability to regenerate the CNTs used. The process is economically feasible and easy to carry out. All those add more credits to MWCNTs for removing pollutants from e-wastes, which is meaningful for complying with WEEE directive.","PeriodicalId":6324,"journal":{"name":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","volume":"17 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enrichment and removal of heavy metals contained in PCB boards by multiwalled carbon nanotubes for WEEE directive\",\"authors\":\"L. Hua, H. Hou\",\"doi\":\"10.1109/ICEPT.2008.4607151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PCB board is an important part of electronic and electrical equipment. In place of piling e-wastes, much of heavy metals in PCB boards percolate into soil, air, river etc. which is a great threaten to environment. In order to removal the hazardous materials for WEEE directive, in this paper, a study on enrichment of lead, cadmium ions by multiwalled carbon nanotubes (MWCNTs) as a solid-phase extraction adsorbent was employed. ICP-OES was used to determine the adsorbed concentrations. Some valuable guidelines can be drawn from the following discussions. MWCNTs has proven to be a promising materials for the removal of contaminants owing to its amazing effects of enrichment, the objective content was concentrated about 50-100 fold, and limit of detection (LOD) was 0.5 mugmiddotkg-1 for Pb, 0.2 mugmiddotkg-1 for Cd. The ion exchange or hydrogen binding mechanism can very well explain the heavy metals such as Pb, Cd adsorption onto CNTs. Sorption can be modeled by Freundlich isotherms from which thermodynamic parameters such as free energy change (DeltaG), enthalpy change (DeltaH), and entropy change (DeltaS) can be calculated. DeltaG<0, DeltaS>0 indicated the process to be feasible and spontaneous nature. DeltaH>0 suggested that the process to be an endothermic nature. Enrichment can be influenced by factors as contact time, temperature, pH and initial concentration of adsorbate, etc. Sorption increased with increasing contact time, and temperature, initial concentration of adsorbate. For each of analyte, there is a neutral pH beyond which MWCNTs will be either positively or negatively charged. Desorption studies have shown the applicability to regenerate the CNTs used. The process is economically feasible and easy to carry out. All those add more credits to MWCNTs for removing pollutants from e-wastes, which is meaningful for complying with WEEE directive.\",\"PeriodicalId\":6324,\"journal\":{\"name\":\"2008 International Conference on Electronic Packaging Technology & High Density Packaging\",\"volume\":\"17 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Electronic Packaging Technology & High Density Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT.2008.4607151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Electronic Packaging Technology & High Density Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT.2008.4607151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enrichment and removal of heavy metals contained in PCB boards by multiwalled carbon nanotubes for WEEE directive
PCB board is an important part of electronic and electrical equipment. In place of piling e-wastes, much of heavy metals in PCB boards percolate into soil, air, river etc. which is a great threaten to environment. In order to removal the hazardous materials for WEEE directive, in this paper, a study on enrichment of lead, cadmium ions by multiwalled carbon nanotubes (MWCNTs) as a solid-phase extraction adsorbent was employed. ICP-OES was used to determine the adsorbed concentrations. Some valuable guidelines can be drawn from the following discussions. MWCNTs has proven to be a promising materials for the removal of contaminants owing to its amazing effects of enrichment, the objective content was concentrated about 50-100 fold, and limit of detection (LOD) was 0.5 mugmiddotkg-1 for Pb, 0.2 mugmiddotkg-1 for Cd. The ion exchange or hydrogen binding mechanism can very well explain the heavy metals such as Pb, Cd adsorption onto CNTs. Sorption can be modeled by Freundlich isotherms from which thermodynamic parameters such as free energy change (DeltaG), enthalpy change (DeltaH), and entropy change (DeltaS) can be calculated. DeltaG<0, DeltaS>0 indicated the process to be feasible and spontaneous nature. DeltaH>0 suggested that the process to be an endothermic nature. Enrichment can be influenced by factors as contact time, temperature, pH and initial concentration of adsorbate, etc. Sorption increased with increasing contact time, and temperature, initial concentration of adsorbate. For each of analyte, there is a neutral pH beyond which MWCNTs will be either positively or negatively charged. Desorption studies have shown the applicability to regenerate the CNTs used. The process is economically feasible and easy to carry out. All those add more credits to MWCNTs for removing pollutants from e-wastes, which is meaningful for complying with WEEE directive.