{"title":"锡晶须的电短路倾向","authors":"Sungwon Han, M. Osterman, M. Pecht","doi":"10.1109/TEPM.2010.2053377","DOIUrl":null,"url":null,"abstract":"When a tin whisker bridges two differently biased conductors, an electrical short is not guaranteed. In many instances, the voltage must exceed a threshold level in order to produce current flow due to weak physical contact and the presence of a non-conductive film such as an oxide layer. This paper presents a study that examines the breakdown voltage of tin whiskers and its relation to contact force. Whisker contact force studies were conducted using gold- and tin-coated tungsten probes, and the breakdown voltage was measured using a semiconductor parameter analyzer. It was verified that contact force is a critical factor in determining the type of current-voltage transition and level of breakdown voltage. Lower contact force between the probe and the whiskers caused the multiple transitions in current-voltage characteristics. The tin oxide layers on whiskers were analyzed using field emission transmission electron microscopy (FE-TEM).","PeriodicalId":55010,"journal":{"name":"IEEE Transactions on Electronics Packaging Manufacturing","volume":"12 1","pages":"205-211"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Electrical Shorting Propensity of Tin Whiskers\",\"authors\":\"Sungwon Han, M. Osterman, M. Pecht\",\"doi\":\"10.1109/TEPM.2010.2053377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a tin whisker bridges two differently biased conductors, an electrical short is not guaranteed. In many instances, the voltage must exceed a threshold level in order to produce current flow due to weak physical contact and the presence of a non-conductive film such as an oxide layer. This paper presents a study that examines the breakdown voltage of tin whiskers and its relation to contact force. Whisker contact force studies were conducted using gold- and tin-coated tungsten probes, and the breakdown voltage was measured using a semiconductor parameter analyzer. It was verified that contact force is a critical factor in determining the type of current-voltage transition and level of breakdown voltage. Lower contact force between the probe and the whiskers caused the multiple transitions in current-voltage characteristics. The tin oxide layers on whiskers were analyzed using field emission transmission electron microscopy (FE-TEM).\",\"PeriodicalId\":55010,\"journal\":{\"name\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"volume\":\"12 1\",\"pages\":\"205-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electronics Packaging Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEPM.2010.2053377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electronics Packaging Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEPM.2010.2053377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When a tin whisker bridges two differently biased conductors, an electrical short is not guaranteed. In many instances, the voltage must exceed a threshold level in order to produce current flow due to weak physical contact and the presence of a non-conductive film such as an oxide layer. This paper presents a study that examines the breakdown voltage of tin whiskers and its relation to contact force. Whisker contact force studies were conducted using gold- and tin-coated tungsten probes, and the breakdown voltage was measured using a semiconductor parameter analyzer. It was verified that contact force is a critical factor in determining the type of current-voltage transition and level of breakdown voltage. Lower contact force between the probe and the whiskers caused the multiple transitions in current-voltage characteristics. The tin oxide layers on whiskers were analyzed using field emission transmission electron microscopy (FE-TEM).