I. Silander, C. Forssén, J. Zakrisson, M. Zelan, O. Axner
{"title":"两个气体调制折光计帕斯卡表征的光学实现","authors":"I. Silander, C. Forssén, J. Zakrisson, M. Zelan, O. Axner","doi":"10.1116/6.0001042","DOIUrl":null,"url":null,"abstract":"By measuring the refractivity and the temperature of a gas, its pressure can be calculated from fundamental principles. The most sensitive instruments are currently based on Fabry–Perot cavities where a laser is used to probe the frequency of a cavity mode. However, for best accuracy, the realization of such systems requires exceptional mechanical stability. Gas modulation refractometry (GAMOR) has previously demonstrated an impressive ability to mitigate the influence of fluctuations and drifts whereby it can provide high-precision (sub-ppm, i.e., sub-parts-per-million or sub- 10 − 6) assessment of gas refractivity and pressure. In this work, two independent GAMOR-based refractometers are individually characterized, compared to each other, and finally compared to a calibrated dead weight piston gauge with respect to their abilities to assess pressure in the 4–25 kPa range. The first system, referred to as the stationary optical pascal (SOP), uses a miniature fixed point gallium cell to measure the temperature. The second system, denoted the transportable optical pascal (TOP), relies on calibrated Pt-100 sensors. The expanded uncertainty for assessment of pressure ( k = 2) was estimated to, for the SOP and TOP, [ ( 10 mPa ) 2 + ( 10 × 10 − 6 P ) 2 ] 1 / 2 and [ ( 16 mPa ) 2 + ( 28 × 10 − 6 P ) 2 ] 1 / 2, respectively. While the uncertainty of the SOP is mainly limited by the uncertainty in the molar polarizability of nitrogen (8 ppm), the uncertainty of the TOP is dominated by the temperature assessment (26 ppm). To verify the long-term stability, the systems were compared to each other over a period of 5 months. It was found that all measurements fell within the estimated expanded uncertainty ( k = 2) for comparative measurements (27 ppm). This verified that the estimated error budget for the uncorrelated errors holds over this extensive period of time.","PeriodicalId":17495,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optical realization of the pascal—Characterization of two gas modulated refractometers\",\"authors\":\"I. Silander, C. Forssén, J. Zakrisson, M. Zelan, O. Axner\",\"doi\":\"10.1116/6.0001042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By measuring the refractivity and the temperature of a gas, its pressure can be calculated from fundamental principles. The most sensitive instruments are currently based on Fabry–Perot cavities where a laser is used to probe the frequency of a cavity mode. However, for best accuracy, the realization of such systems requires exceptional mechanical stability. Gas modulation refractometry (GAMOR) has previously demonstrated an impressive ability to mitigate the influence of fluctuations and drifts whereby it can provide high-precision (sub-ppm, i.e., sub-parts-per-million or sub- 10 − 6) assessment of gas refractivity and pressure. In this work, two independent GAMOR-based refractometers are individually characterized, compared to each other, and finally compared to a calibrated dead weight piston gauge with respect to their abilities to assess pressure in the 4–25 kPa range. The first system, referred to as the stationary optical pascal (SOP), uses a miniature fixed point gallium cell to measure the temperature. The second system, denoted the transportable optical pascal (TOP), relies on calibrated Pt-100 sensors. The expanded uncertainty for assessment of pressure ( k = 2) was estimated to, for the SOP and TOP, [ ( 10 mPa ) 2 + ( 10 × 10 − 6 P ) 2 ] 1 / 2 and [ ( 16 mPa ) 2 + ( 28 × 10 − 6 P ) 2 ] 1 / 2, respectively. While the uncertainty of the SOP is mainly limited by the uncertainty in the molar polarizability of nitrogen (8 ppm), the uncertainty of the TOP is dominated by the temperature assessment (26 ppm). To verify the long-term stability, the systems were compared to each other over a period of 5 months. It was found that all measurements fell within the estimated expanded uncertainty ( k = 2) for comparative measurements (27 ppm). This verified that the estimated error budget for the uncorrelated errors holds over this extensive period of time.\",\"PeriodicalId\":17495,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0001042\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0001042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical realization of the pascal—Characterization of two gas modulated refractometers
By measuring the refractivity and the temperature of a gas, its pressure can be calculated from fundamental principles. The most sensitive instruments are currently based on Fabry–Perot cavities where a laser is used to probe the frequency of a cavity mode. However, for best accuracy, the realization of such systems requires exceptional mechanical stability. Gas modulation refractometry (GAMOR) has previously demonstrated an impressive ability to mitigate the influence of fluctuations and drifts whereby it can provide high-precision (sub-ppm, i.e., sub-parts-per-million or sub- 10 − 6) assessment of gas refractivity and pressure. In this work, two independent GAMOR-based refractometers are individually characterized, compared to each other, and finally compared to a calibrated dead weight piston gauge with respect to their abilities to assess pressure in the 4–25 kPa range. The first system, referred to as the stationary optical pascal (SOP), uses a miniature fixed point gallium cell to measure the temperature. The second system, denoted the transportable optical pascal (TOP), relies on calibrated Pt-100 sensors. The expanded uncertainty for assessment of pressure ( k = 2) was estimated to, for the SOP and TOP, [ ( 10 mPa ) 2 + ( 10 × 10 − 6 P ) 2 ] 1 / 2 and [ ( 16 mPa ) 2 + ( 28 × 10 − 6 P ) 2 ] 1 / 2, respectively. While the uncertainty of the SOP is mainly limited by the uncertainty in the molar polarizability of nitrogen (8 ppm), the uncertainty of the TOP is dominated by the temperature assessment (26 ppm). To verify the long-term stability, the systems were compared to each other over a period of 5 months. It was found that all measurements fell within the estimated expanded uncertainty ( k = 2) for comparative measurements (27 ppm). This verified that the estimated error budget for the uncorrelated errors holds over this extensive period of time.
期刊介绍:
Journal of Vacuum Science & Technology B emphasizes processing, measurement and phenomena associated with micrometer and nanometer structures and devices. Processing may include vacuum processing, plasma processing and microlithography among others, while measurement refers to a wide range of materials and device characterization methods for understanding the physics and chemistry of submicron and nanometer structures and devices.