内源性酶抗氧化防御和病理

A. Eddaikra, N. Eddaikra
{"title":"内源性酶抗氧化防御和病理","authors":"A. Eddaikra, N. Eddaikra","doi":"10.5772/INTECHOPEN.95504","DOIUrl":null,"url":null,"abstract":"Oxidative stress is an important component of various diseases. It manifests as an imbalance caused by an excessive production of reactive oxygen species (ROS) which are associated with a deficit of antioxidant activity. This deficit can be the consequence of genetic factors, environmental ones, metabolic imbalance, toxicity or direct attacks by the accumulation of free radicals. These can induce metabolic dysfunction affecting biological macromolecules in their structures or activities. From a physiological perspective, the neutralization of free radicals is ensured by enzymatic, antioxidant and non-enzymatic defense systems. In the present chapter, we will focus on the endogenous enzymatic antioxidant defense system such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPxs), thioredoxin (Trx) and paraxonase which play an important role in homeostatic redox balance. Also, we will review this set of antioxidants enzymes within different pathological states such as diabetes, cancer, autoimmune diseases, cardiovascular, Alzheimer’s, Parkinson’s or parasitic diseases such as Leishmaniasis and Malaria.","PeriodicalId":8028,"journal":{"name":"Antioxidants - Benefits, Sources, Mechanisms of Action","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Endogenous Enzymatic Antioxidant Defense and Pathologies\",\"authors\":\"A. Eddaikra, N. Eddaikra\",\"doi\":\"10.5772/INTECHOPEN.95504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxidative stress is an important component of various diseases. It manifests as an imbalance caused by an excessive production of reactive oxygen species (ROS) which are associated with a deficit of antioxidant activity. This deficit can be the consequence of genetic factors, environmental ones, metabolic imbalance, toxicity or direct attacks by the accumulation of free radicals. These can induce metabolic dysfunction affecting biological macromolecules in their structures or activities. From a physiological perspective, the neutralization of free radicals is ensured by enzymatic, antioxidant and non-enzymatic defense systems. In the present chapter, we will focus on the endogenous enzymatic antioxidant defense system such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPxs), thioredoxin (Trx) and paraxonase which play an important role in homeostatic redox balance. Also, we will review this set of antioxidants enzymes within different pathological states such as diabetes, cancer, autoimmune diseases, cardiovascular, Alzheimer’s, Parkinson’s or parasitic diseases such as Leishmaniasis and Malaria.\",\"PeriodicalId\":8028,\"journal\":{\"name\":\"Antioxidants - Benefits, Sources, Mechanisms of Action\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants - Benefits, Sources, Mechanisms of Action\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.95504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants - Benefits, Sources, Mechanisms of Action","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.95504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

氧化应激是多种疾病的重要组成部分。它表现为由活性氧(ROS)的过量产生引起的不平衡,这与抗氧化活性的缺陷有关。这种缺陷可能是遗传因素、环境因素、代谢不平衡、毒性或自由基积累的直接攻击的结果。这些可以诱导代谢功能障碍,影响生物大分子的结构或活动。从生理角度来看,自由基的中和是由酶、抗氧化和非酶防御系统保证的。在本章中,我们将重点介绍内源性酶抗氧化防御系统,如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPxs)、硫氧还蛋白(Trx)和对axonase,它们在稳态氧化还原平衡中起重要作用。此外,我们将回顾这组抗氧化剂酶在不同的病理状态,如糖尿病,癌症,自身免疫性疾病,心血管病,阿尔茨海默病,帕金森病或寄生虫病,如利什曼病和疟疾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endogenous Enzymatic Antioxidant Defense and Pathologies
Oxidative stress is an important component of various diseases. It manifests as an imbalance caused by an excessive production of reactive oxygen species (ROS) which are associated with a deficit of antioxidant activity. This deficit can be the consequence of genetic factors, environmental ones, metabolic imbalance, toxicity or direct attacks by the accumulation of free radicals. These can induce metabolic dysfunction affecting biological macromolecules in their structures or activities. From a physiological perspective, the neutralization of free radicals is ensured by enzymatic, antioxidant and non-enzymatic defense systems. In the present chapter, we will focus on the endogenous enzymatic antioxidant defense system such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPxs), thioredoxin (Trx) and paraxonase which play an important role in homeostatic redox balance. Also, we will review this set of antioxidants enzymes within different pathological states such as diabetes, cancer, autoimmune diseases, cardiovascular, Alzheimer’s, Parkinson’s or parasitic diseases such as Leishmaniasis and Malaria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信