Lamin L. Janneh , Youngjun Zhang , Mbemba Hydara , Zhongwei Cui
{"title":"基于深度学习的混合特征选择用于农作物和杂草的语义分割","authors":"Lamin L. Janneh , Youngjun Zhang , Mbemba Hydara , Zhongwei Cui","doi":"10.1016/j.icte.2023.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Deep convolution neural networks are the recent algorithms used for robotic vision. However, the complex crop–weed vegetation and the background interferences required a robust feature representation. Therefore, we proposed a Dual-branch Deep neural network for the semantic segmentation of crops and weeds. The branches utilized distinct feature extraction algorithms that extract essential semantic cues, and a decoder combined these features to improve the global contextual information. Finally, the hybrid feature selection module(HSFM) utilized the decoder features to complement one another. Experimental results show the proposed method obtained mean intersection of union scores of 0.8613 and 0.9099 on CWFID and BoniRob datasets, respectively.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 1","pages":"Pages 118-124"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523000875/pdfft?md5=b386ec19e230be5c446383ee349566a9&pid=1-s2.0-S2405959523000875-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based hybrid feature selection for the semantic segmentation of crops and weeds\",\"authors\":\"Lamin L. Janneh , Youngjun Zhang , Mbemba Hydara , Zhongwei Cui\",\"doi\":\"10.1016/j.icte.2023.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep convolution neural networks are the recent algorithms used for robotic vision. However, the complex crop–weed vegetation and the background interferences required a robust feature representation. Therefore, we proposed a Dual-branch Deep neural network for the semantic segmentation of crops and weeds. The branches utilized distinct feature extraction algorithms that extract essential semantic cues, and a decoder combined these features to improve the global contextual information. Finally, the hybrid feature selection module(HSFM) utilized the decoder features to complement one another. Experimental results show the proposed method obtained mean intersection of union scores of 0.8613 and 0.9099 on CWFID and BoniRob datasets, respectively.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 1\",\"pages\":\"Pages 118-124\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959523000875/pdfft?md5=b386ec19e230be5c446383ee349566a9&pid=1-s2.0-S2405959523000875-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959523000875\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523000875","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deep learning-based hybrid feature selection for the semantic segmentation of crops and weeds
Deep convolution neural networks are the recent algorithms used for robotic vision. However, the complex crop–weed vegetation and the background interferences required a robust feature representation. Therefore, we proposed a Dual-branch Deep neural network for the semantic segmentation of crops and weeds. The branches utilized distinct feature extraction algorithms that extract essential semantic cues, and a decoder combined these features to improve the global contextual information. Finally, the hybrid feature selection module(HSFM) utilized the decoder features to complement one another. Experimental results show the proposed method obtained mean intersection of union scores of 0.8613 and 0.9099 on CWFID and BoniRob datasets, respectively.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.