用于扇出晶圆级封装的细间距RDL集成

Prayudi Lianto, Chin Wei Ronnie Tan, Qi Jie Peng, Abdul Hakim Jumat, Xundong Dai, Khai Mum Peter Fung, Guan Huei See, S. Chong, Soon Wee David Ho, Siew Boon Serine Soh, Seow Huang Sharon Lim, Hung Ming Calvin Chua, Ahmad Abdillah Haron, Huan Ching Kenneth Lee, Mingsheng Zhang, Zhi Hao Ko, Ye Ko San, Henry Leong
{"title":"用于扇出晶圆级封装的细间距RDL集成","authors":"Prayudi Lianto, Chin Wei Ronnie Tan, Qi Jie Peng, Abdul Hakim Jumat, Xundong Dai, Khai Mum Peter Fung, Guan Huei See, S. Chong, Soon Wee David Ho, Siew Boon Serine Soh, Seow Huang Sharon Lim, Hung Ming Calvin Chua, Ahmad Abdillah Haron, Huan Ching Kenneth Lee, Mingsheng Zhang, Zhi Hao Ko, Ye Ko San, Henry Leong","doi":"10.1109/ectc32862.2020.00181","DOIUrl":null,"url":null,"abstract":"Fan-Out wafer-level packaging (FOWLP) semi-additive process (SAP) flow for three layers of redistribution layer (RDL) has been developed. Patched dicing lane design is adopted to improve RDL plating uniformity by ~40x, as measured by sheet resistance (Rs). We demonstrate warpage correction solution to improve pattern integrity despite tool handling limitations. We also demonstrate a CMP solution to improve 2/2um L/S RDL pattern integrity by >10x. We achieve RDL mechanical integrity through an integrated endpoint-detection-controlled wet etch solution to achieve <50nm undercut and extend SAP process to sub-2/2um L/S RDL. We also establish RDL electrical integrity by integrating wafer treatment solution after RDL formation to achieve line-to-line leakage current <0.1nA. Upon completion of wafer-level process, package assembly is carried out using SAC305 BGA onto PCB. Package integrity is examined using X-ray, followed by a progressive thermal cycling (TC) reliability test. RDL mechanical and electrical integrity is proven from the board-level reliability test where the RDL layers pass 1000 TC and failure occurs on the BGA level.","PeriodicalId":6722,"journal":{"name":"2020 IEEE 70th Electronic Components and Technology Conference (ECTC)","volume":"45 1","pages":"1126-1131"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fine-Pitch RDL Integration for Fan-Out Wafer-Level Packaging\",\"authors\":\"Prayudi Lianto, Chin Wei Ronnie Tan, Qi Jie Peng, Abdul Hakim Jumat, Xundong Dai, Khai Mum Peter Fung, Guan Huei See, S. Chong, Soon Wee David Ho, Siew Boon Serine Soh, Seow Huang Sharon Lim, Hung Ming Calvin Chua, Ahmad Abdillah Haron, Huan Ching Kenneth Lee, Mingsheng Zhang, Zhi Hao Ko, Ye Ko San, Henry Leong\",\"doi\":\"10.1109/ectc32862.2020.00181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fan-Out wafer-level packaging (FOWLP) semi-additive process (SAP) flow for three layers of redistribution layer (RDL) has been developed. Patched dicing lane design is adopted to improve RDL plating uniformity by ~40x, as measured by sheet resistance (Rs). We demonstrate warpage correction solution to improve pattern integrity despite tool handling limitations. We also demonstrate a CMP solution to improve 2/2um L/S RDL pattern integrity by >10x. We achieve RDL mechanical integrity through an integrated endpoint-detection-controlled wet etch solution to achieve <50nm undercut and extend SAP process to sub-2/2um L/S RDL. We also establish RDL electrical integrity by integrating wafer treatment solution after RDL formation to achieve line-to-line leakage current <0.1nA. Upon completion of wafer-level process, package assembly is carried out using SAC305 BGA onto PCB. Package integrity is examined using X-ray, followed by a progressive thermal cycling (TC) reliability test. RDL mechanical and electrical integrity is proven from the board-level reliability test where the RDL layers pass 1000 TC and failure occurs on the BGA level.\",\"PeriodicalId\":6722,\"journal\":{\"name\":\"2020 IEEE 70th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"45 1\",\"pages\":\"1126-1131\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 70th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ectc32862.2020.00181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 70th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ectc32862.2020.00181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

建立了三层再分布层(RDL)的扇出圆片级封装(FOWLP)半增材工艺(SAP)流程。采用补片式切割道设计,可将RDL电镀均匀性提高约40倍(以片材电阻Rs测量)。我们演示了翘曲纠正解决方案,以提高模式的完整性,尽管工具处理的限制。我们还演示了一种CMP解决方案,可将2/2um L/S RDL模式完整性提高10倍。我们通过集成的端点检测控制湿式蚀刻解决方案实现RDL的机械完整性,以实现<50nm的下切,并将SAP工艺扩展到低于2/2um的L/S RDL。我们还通过集成RDL形成后的晶圆处理溶液,建立RDL电气完整性,实现线对线漏电流<0.1nA。在完成晶圆级工艺后,使用SAC305 BGA在PCB上进行封装组装。使用x射线检查包装完整性,然后进行渐进式热循环(TC)可靠性测试。RDL的机械和电气完整性从板级可靠性测试中得到证明,其中RDL层通过1000 TC,故障发生在BGA级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-Pitch RDL Integration for Fan-Out Wafer-Level Packaging
Fan-Out wafer-level packaging (FOWLP) semi-additive process (SAP) flow for three layers of redistribution layer (RDL) has been developed. Patched dicing lane design is adopted to improve RDL plating uniformity by ~40x, as measured by sheet resistance (Rs). We demonstrate warpage correction solution to improve pattern integrity despite tool handling limitations. We also demonstrate a CMP solution to improve 2/2um L/S RDL pattern integrity by >10x. We achieve RDL mechanical integrity through an integrated endpoint-detection-controlled wet etch solution to achieve <50nm undercut and extend SAP process to sub-2/2um L/S RDL. We also establish RDL electrical integrity by integrating wafer treatment solution after RDL formation to achieve line-to-line leakage current <0.1nA. Upon completion of wafer-level process, package assembly is carried out using SAC305 BGA onto PCB. Package integrity is examined using X-ray, followed by a progressive thermal cycling (TC) reliability test. RDL mechanical and electrical integrity is proven from the board-level reliability test where the RDL layers pass 1000 TC and failure occurs on the BGA level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信