基于第三类Chebyshev多项式的Volterra-Fredholm分数阶积分微分方程的理论与数值研究

Zineb Laouar, N. Arar, A. B. Makhlouf
{"title":"基于第三类Chebyshev多项式的Volterra-Fredholm分数阶积分微分方程的理论与数值研究","authors":"Zineb Laouar, N. Arar, A. B. Makhlouf","doi":"10.1155/2023/6401067","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an efficient numerical method to approximate the solution of fractional integro-differential equations (FI-DEs) of mixed Volterra−Fredholm type using spectral collocation method with shifted Chebyshev polynomials of the third kind (S-Cheb-3). The fractional derivative is described in the Caputo sense. A Chebyshev−Gauss quadrature is involved to evaluate integrals for more precision. Two types of equations are studied to obtain algebraic systems solvable using the Gauss elimination method for linear equations and the Newton algorithm for nonlinear ones. In addition, an error analysis is carried out. Six numerical examples are evaluated using different error values (maximum absolute error, root mean square error, and relative error) to compare the approximate and the exact solutions of each example. The experimental rate of convergence is calculated as well. The results validate the numerical approach’s efficiency, applicability, and performance.","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"1 1","pages":"6401067:1-6401067:13"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and Numerical Study for Volterra-Fredholm Fractional Integro-Differential Equations Based on Chebyshev Polynomials of the Third Kind\",\"authors\":\"Zineb Laouar, N. Arar, A. B. Makhlouf\",\"doi\":\"10.1155/2023/6401067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an efficient numerical method to approximate the solution of fractional integro-differential equations (FI-DEs) of mixed Volterra−Fredholm type using spectral collocation method with shifted Chebyshev polynomials of the third kind (S-Cheb-3). The fractional derivative is described in the Caputo sense. A Chebyshev−Gauss quadrature is involved to evaluate integrals for more precision. Two types of equations are studied to obtain algebraic systems solvable using the Gauss elimination method for linear equations and the Newton algorithm for nonlinear ones. In addition, an error analysis is carried out. Six numerical examples are evaluated using different error values (maximum absolute error, root mean square error, and relative error) to compare the approximate and the exact solutions of each example. The experimental rate of convergence is calculated as well. The results validate the numerical approach’s efficiency, applicability, and performance.\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"1 1\",\"pages\":\"6401067:1-6401067:13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6401067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6401067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的数值逼近混合Volterra - Fredholm型分数阶积分微分方程(FI-DEs)解的方法,该方法使用了第三类移位Chebyshev多项式(S-Cheb-3)的谱配置法。分数阶导数是用卡普托意义来描述的。一个切比雪夫-高斯正交涉及到计算更精确的积分。研究了两类方程,分别用高斯消元法求解线性方程组和用牛顿算法求解非线性方程组。此外,还进行了误差分析。使用不同的误差值(最大绝对误差、均方根误差和相对误差)对六个数值示例进行评估,以比较每个示例的近似解和精确解。并计算了实验收敛速率。结果验证了数值方法的有效性、适用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical and Numerical Study for Volterra-Fredholm Fractional Integro-Differential Equations Based on Chebyshev Polynomials of the Third Kind
In this paper, we develop an efficient numerical method to approximate the solution of fractional integro-differential equations (FI-DEs) of mixed Volterra−Fredholm type using spectral collocation method with shifted Chebyshev polynomials of the third kind (S-Cheb-3). The fractional derivative is described in the Caputo sense. A Chebyshev−Gauss quadrature is involved to evaluate integrals for more precision. Two types of equations are studied to obtain algebraic systems solvable using the Gauss elimination method for linear equations and the Newton algorithm for nonlinear ones. In addition, an error analysis is carried out. Six numerical examples are evaluated using different error values (maximum absolute error, root mean square error, and relative error) to compare the approximate and the exact solutions of each example. The experimental rate of convergence is calculated as well. The results validate the numerical approach’s efficiency, applicability, and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信