Cristhian Rafael Lopes Francisco, Marluci Palazzolli Silva, Fernando Divino Oliveira Júnior, Tatiana Porto Santos, Rosiane Lopes Cunha
{"title":"加热和非加热羽扇豆蛋白-葡萄籽提取物共轭物稳定和构建高内相水包油乳剂","authors":"Cristhian Rafael Lopes Francisco, Marluci Palazzolli Silva, Fernando Divino Oliveira Júnior, Tatiana Porto Santos, Rosiane Lopes Cunha","doi":"10.1002/aocs.12727","DOIUrl":null,"url":null,"abstract":"<p>Plant-based high internal phase oil-in-water emulsions (HIPEs) are promising fat replacers. However, producing stable HIPES with improved viscoelastic properties is a challenge for the food industry. Conjugation of plant proteins, such as lupin protein isolate, with phenolic compounds, such as proanthocyanidins from grape seed extract, associated (or not) with moderate heat treatment arise as potential methods to tune the surface properties of proteins and, consequently, the droplet-droplet interactions that drive the viscoelastic properties of HIPEs. In this way, unheated (UHC) and heated (85°C, 15 min) (HC) lupin protein (LPI)-grape seed extract (GSE) conjugates were produced and used to stabilize HIPEs. Evaluation of stability by Turbiscan and oil loss by centrifugation over 56 days of storage did not reflect the kinetic stability of HIPEs against process conditions. Under shearing, UHC-stabilized emulsions at high GSE concentrations showed oil release, whereas all HC-stabilized HIPEs released oil. However, the increase in GSE concentration and heat treatment improved the viscosity and storage modulus (G′) of HIPEs, possibly due to the droplet-droplet interaction originating from hydrophilic and hydrophobic interactions in UHC and HC-stabilized HIPEs, respectively. This pivotal study confirmed that conjugation of a plant protein with GSE and heat treatment could improve the viscoelastic properties of HIPEs and produce HIPEs with superior texture (higher G′).</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heated and unheated lupin protein-grape seed extract conjugates stabilizing and structuring high internal phase oil-in-water emulsions\",\"authors\":\"Cristhian Rafael Lopes Francisco, Marluci Palazzolli Silva, Fernando Divino Oliveira Júnior, Tatiana Porto Santos, Rosiane Lopes Cunha\",\"doi\":\"10.1002/aocs.12727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plant-based high internal phase oil-in-water emulsions (HIPEs) are promising fat replacers. However, producing stable HIPES with improved viscoelastic properties is a challenge for the food industry. Conjugation of plant proteins, such as lupin protein isolate, with phenolic compounds, such as proanthocyanidins from grape seed extract, associated (or not) with moderate heat treatment arise as potential methods to tune the surface properties of proteins and, consequently, the droplet-droplet interactions that drive the viscoelastic properties of HIPEs. In this way, unheated (UHC) and heated (85°C, 15 min) (HC) lupin protein (LPI)-grape seed extract (GSE) conjugates were produced and used to stabilize HIPEs. Evaluation of stability by Turbiscan and oil loss by centrifugation over 56 days of storage did not reflect the kinetic stability of HIPEs against process conditions. Under shearing, UHC-stabilized emulsions at high GSE concentrations showed oil release, whereas all HC-stabilized HIPEs released oil. However, the increase in GSE concentration and heat treatment improved the viscosity and storage modulus (G′) of HIPEs, possibly due to the droplet-droplet interaction originating from hydrophilic and hydrophobic interactions in UHC and HC-stabilized HIPEs, respectively. This pivotal study confirmed that conjugation of a plant protein with GSE and heat treatment could improve the viscoelastic properties of HIPEs and produce HIPEs with superior texture (higher G′).</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12727\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12727","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Heated and unheated lupin protein-grape seed extract conjugates stabilizing and structuring high internal phase oil-in-water emulsions
Plant-based high internal phase oil-in-water emulsions (HIPEs) are promising fat replacers. However, producing stable HIPES with improved viscoelastic properties is a challenge for the food industry. Conjugation of plant proteins, such as lupin protein isolate, with phenolic compounds, such as proanthocyanidins from grape seed extract, associated (or not) with moderate heat treatment arise as potential methods to tune the surface properties of proteins and, consequently, the droplet-droplet interactions that drive the viscoelastic properties of HIPEs. In this way, unheated (UHC) and heated (85°C, 15 min) (HC) lupin protein (LPI)-grape seed extract (GSE) conjugates were produced and used to stabilize HIPEs. Evaluation of stability by Turbiscan and oil loss by centrifugation over 56 days of storage did not reflect the kinetic stability of HIPEs against process conditions. Under shearing, UHC-stabilized emulsions at high GSE concentrations showed oil release, whereas all HC-stabilized HIPEs released oil. However, the increase in GSE concentration and heat treatment improved the viscosity and storage modulus (G′) of HIPEs, possibly due to the droplet-droplet interaction originating from hydrophilic and hydrophobic interactions in UHC and HC-stabilized HIPEs, respectively. This pivotal study confirmed that conjugation of a plant protein with GSE and heat treatment could improve the viscoelastic properties of HIPEs and produce HIPEs with superior texture (higher G′).
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.