Shan X Wang, Xuyang Sun, Zhuguo Wang, S. Zhou, Shanshan Su, Xingmei Nan, D. Lu, Zhanqiang Li
{"title":"香草酸通过增强NO信号通路减轻单芥碱诱导的肺动脉高压","authors":"Shan X Wang, Xuyang Sun, Zhuguo Wang, S. Zhou, Shanshan Su, Xingmei Nan, D. Lu, Zhanqiang Li","doi":"10.1177/1934578X221128411","DOIUrl":null,"url":null,"abstract":"Pulmonary arterial hypertension (PAH) is a severe progressive disease characterized by elevated mean pulmonary arterial pressure, right ventricular hypertrophy, and eventual progression to right heart failure and death. This study aimed to examine the effect of the natural product vanillic acid (VA) on monocrotaline (MCT)-induced PAH in rats. The arginase inhibitory activity and enzyme kinetic reaction of VA were also investigated. The results showed that VA could improve pulmonary arterial pressure, pulmonary artery vascular remodeling, and right ventricular remodeling induced by MCT in rats and reduce the degree of pulmonary tissue fibrosis. Moreover, VA downregulated the gene and protein expression levels of Hif-2α, Hif-1β, and Arg2 and increased the P-eNOS/eNOS levels, thus increasing nitric oxide (NO) levels in PAH rats. Furthermore, VA was determined to be a mixed competitive arginase inhibitor with an IC50 of 26.1 μM. In conclusion, the arginase inhibitor VA exerted protective effects on MCT-induced PAH and pulmonary vascular remodeling by enhancing NO signaling pathways.","PeriodicalId":19019,"journal":{"name":"Natural Product Communications","volume":"38 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vanillic Acid Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension by Enhancing NO Signaling Pathways\",\"authors\":\"Shan X Wang, Xuyang Sun, Zhuguo Wang, S. Zhou, Shanshan Su, Xingmei Nan, D. Lu, Zhanqiang Li\",\"doi\":\"10.1177/1934578X221128411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulmonary arterial hypertension (PAH) is a severe progressive disease characterized by elevated mean pulmonary arterial pressure, right ventricular hypertrophy, and eventual progression to right heart failure and death. This study aimed to examine the effect of the natural product vanillic acid (VA) on monocrotaline (MCT)-induced PAH in rats. The arginase inhibitory activity and enzyme kinetic reaction of VA were also investigated. The results showed that VA could improve pulmonary arterial pressure, pulmonary artery vascular remodeling, and right ventricular remodeling induced by MCT in rats and reduce the degree of pulmonary tissue fibrosis. Moreover, VA downregulated the gene and protein expression levels of Hif-2α, Hif-1β, and Arg2 and increased the P-eNOS/eNOS levels, thus increasing nitric oxide (NO) levels in PAH rats. Furthermore, VA was determined to be a mixed competitive arginase inhibitor with an IC50 of 26.1 μM. In conclusion, the arginase inhibitor VA exerted protective effects on MCT-induced PAH and pulmonary vascular remodeling by enhancing NO signaling pathways.\",\"PeriodicalId\":19019,\"journal\":{\"name\":\"Natural Product Communications\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Communications\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1934578X221128411\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1934578X221128411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Vanillic Acid Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension by Enhancing NO Signaling Pathways
Pulmonary arterial hypertension (PAH) is a severe progressive disease characterized by elevated mean pulmonary arterial pressure, right ventricular hypertrophy, and eventual progression to right heart failure and death. This study aimed to examine the effect of the natural product vanillic acid (VA) on monocrotaline (MCT)-induced PAH in rats. The arginase inhibitory activity and enzyme kinetic reaction of VA were also investigated. The results showed that VA could improve pulmonary arterial pressure, pulmonary artery vascular remodeling, and right ventricular remodeling induced by MCT in rats and reduce the degree of pulmonary tissue fibrosis. Moreover, VA downregulated the gene and protein expression levels of Hif-2α, Hif-1β, and Arg2 and increased the P-eNOS/eNOS levels, thus increasing nitric oxide (NO) levels in PAH rats. Furthermore, VA was determined to be a mixed competitive arginase inhibitor with an IC50 of 26.1 μM. In conclusion, the arginase inhibitor VA exerted protective effects on MCT-induced PAH and pulmonary vascular remodeling by enhancing NO signaling pathways.
期刊介绍:
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.