{"title":"全局优化问题的动态加权共生生物搜索算法","authors":"Pengjun Zhao, Sanyang Liu","doi":"10.1155/2023/1921584","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The symbiotic organisms search (SOS) algorithm is a current effective meta-heuristic algorithm, which is been applied to solve various types of optimization problems. However, the SOS can easily lead to overexploration in the parasitism phase, and it is difficult to balance between exploration and exploitation capabilities. In the present work, two extended versions of the SOS are proposed. Two different weight strategies (i.e., random-weight and adaptive-weight) are utilized to generate the weighted mutual vector, respectively. Meanwhile, the best organism is employed to produce the modified artificial parasite vector. The performance of the two improved algorithms is evaluated on 35 test functions. The results demonstrate that the proposed algorithms are able to provide very promising results. Furthermore, five real-world problems are solved by the two newly proposed methods. Experimental results demonstrate that the presented algorithms are more efficient than the compared algorithms. All the obtained results further indicate that the two proposed algorithms are competitive and provide better results when compared to a wide range of algorithms, including SOS and its five modified versions, as well as ten other meta-heuristic algorithms.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2023 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/1921584","citationCount":"0","resultStr":"{\"title\":\"Dynamic Weighted Symbiotic Organisms Search Algorithm for Global Optimization Problems\",\"authors\":\"Pengjun Zhao, Sanyang Liu\",\"doi\":\"10.1155/2023/1921584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The symbiotic organisms search (SOS) algorithm is a current effective meta-heuristic algorithm, which is been applied to solve various types of optimization problems. However, the SOS can easily lead to overexploration in the parasitism phase, and it is difficult to balance between exploration and exploitation capabilities. In the present work, two extended versions of the SOS are proposed. Two different weight strategies (i.e., random-weight and adaptive-weight) are utilized to generate the weighted mutual vector, respectively. Meanwhile, the best organism is employed to produce the modified artificial parasite vector. The performance of the two improved algorithms is evaluated on 35 test functions. The results demonstrate that the proposed algorithms are able to provide very promising results. Furthermore, five real-world problems are solved by the two newly proposed methods. Experimental results demonstrate that the presented algorithms are more efficient than the compared algorithms. All the obtained results further indicate that the two proposed algorithms are competitive and provide better results when compared to a wide range of algorithms, including SOS and its five modified versions, as well as ten other meta-heuristic algorithms.</p>\\n </div>\",\"PeriodicalId\":50653,\"journal\":{\"name\":\"Complexity\",\"volume\":\"2023 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/1921584\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complexity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2023/1921584\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/1921584","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Dynamic Weighted Symbiotic Organisms Search Algorithm for Global Optimization Problems
The symbiotic organisms search (SOS) algorithm is a current effective meta-heuristic algorithm, which is been applied to solve various types of optimization problems. However, the SOS can easily lead to overexploration in the parasitism phase, and it is difficult to balance between exploration and exploitation capabilities. In the present work, two extended versions of the SOS are proposed. Two different weight strategies (i.e., random-weight and adaptive-weight) are utilized to generate the weighted mutual vector, respectively. Meanwhile, the best organism is employed to produce the modified artificial parasite vector. The performance of the two improved algorithms is evaluated on 35 test functions. The results demonstrate that the proposed algorithms are able to provide very promising results. Furthermore, five real-world problems are solved by the two newly proposed methods. Experimental results demonstrate that the presented algorithms are more efficient than the compared algorithms. All the obtained results further indicate that the two proposed algorithms are competitive and provide better results when compared to a wide range of algorithms, including SOS and its five modified versions, as well as ten other meta-heuristic algorithms.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.