{"title":"喷雾干燥过程中红甜菜颜色变化的胶囊化研究","authors":"Gulsever Neslihan, Karatas Sukru","doi":"10.7176/fsqm/100-01","DOIUrl":null,"url":null,"abstract":"In this research, the red beet concentrates were encapsulated with maltodextrin (DE10) citric acid, monoglycerides, lecitin and sunflower oil then spray dried at 150, 160, and 170°C. The color of each spray dried powder was diluted to one brix and analysed by spectrophotometer at 510 nm in duplicate which was compared to initial color of concentrated red beet. The deterioration of color loses were behaved first-order reaction and the reaction rates (k) were determined as 0.02, 0.039 and 0.068 sn-1 at 150, 160, and 170°C respectively. Higher spray drying air temperature results in high-speed drying. However, it was determined that high inlet air temperatures caused more pigment loss. From reaction rates the activation energy was estimated about 21.16 Kcal/mol by using of Arrhenius equations. Determined during the degradation of pigments by heat, t1/2 values were found as 31.25 sec, 17.76 sec, 10.01 sec at 150, 160, and 170°C, respectively. It was determined that the color of red beet was so sensitive during spray drying. It was also determined that reaction rate was about two times faster at each drying temperature raise up 10°C, it was also size of the encapculated powder were determined between 1-10 µm by scanning electron microscope.","PeriodicalId":12384,"journal":{"name":"Food Science and Quality Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Encapsulated of Red Beet Colour Changes During Spray Drying\",\"authors\":\"Gulsever Neslihan, Karatas Sukru\",\"doi\":\"10.7176/fsqm/100-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the red beet concentrates were encapsulated with maltodextrin (DE10) citric acid, monoglycerides, lecitin and sunflower oil then spray dried at 150, 160, and 170°C. The color of each spray dried powder was diluted to one brix and analysed by spectrophotometer at 510 nm in duplicate which was compared to initial color of concentrated red beet. The deterioration of color loses were behaved first-order reaction and the reaction rates (k) were determined as 0.02, 0.039 and 0.068 sn-1 at 150, 160, and 170°C respectively. Higher spray drying air temperature results in high-speed drying. However, it was determined that high inlet air temperatures caused more pigment loss. From reaction rates the activation energy was estimated about 21.16 Kcal/mol by using of Arrhenius equations. Determined during the degradation of pigments by heat, t1/2 values were found as 31.25 sec, 17.76 sec, 10.01 sec at 150, 160, and 170°C, respectively. It was determined that the color of red beet was so sensitive during spray drying. It was also determined that reaction rate was about two times faster at each drying temperature raise up 10°C, it was also size of the encapculated powder were determined between 1-10 µm by scanning electron microscope.\",\"PeriodicalId\":12384,\"journal\":{\"name\":\"Food Science and Quality Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Quality Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7176/fsqm/100-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7176/fsqm/100-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Encapsulated of Red Beet Colour Changes During Spray Drying
In this research, the red beet concentrates were encapsulated with maltodextrin (DE10) citric acid, monoglycerides, lecitin and sunflower oil then spray dried at 150, 160, and 170°C. The color of each spray dried powder was diluted to one brix and analysed by spectrophotometer at 510 nm in duplicate which was compared to initial color of concentrated red beet. The deterioration of color loses were behaved first-order reaction and the reaction rates (k) were determined as 0.02, 0.039 and 0.068 sn-1 at 150, 160, and 170°C respectively. Higher spray drying air temperature results in high-speed drying. However, it was determined that high inlet air temperatures caused more pigment loss. From reaction rates the activation energy was estimated about 21.16 Kcal/mol by using of Arrhenius equations. Determined during the degradation of pigments by heat, t1/2 values were found as 31.25 sec, 17.76 sec, 10.01 sec at 150, 160, and 170°C, respectively. It was determined that the color of red beet was so sensitive during spray drying. It was also determined that reaction rate was about two times faster at each drying temperature raise up 10°C, it was also size of the encapculated powder were determined between 1-10 µm by scanning electron microscope.