Dongkyun Kim, Youngmoon Choi, E. Do, Yeonil Lee, Yun-Gi Kim
{"title":"高效硅锗堆叠结太阳能电池","authors":"Dongkyun Kim, Youngmoon Choi, E. Do, Yeonil Lee, Yun-Gi Kim","doi":"10.1109/IEDM.2012.6479032","DOIUrl":null,"url":null,"abstract":"We have fabricated Si/Ge stack junction solar cells in order to overcome silicon single junction limit efficiency. Ge cell can absorb long wavelength photons that cannot be absorbed in Si. Bottom Ge solar cell can theoretically yield additional 5% efficiency to Si top cell. We have fabricated 21.3% top Si / 1.6% bottom Ge stack junction with 22.9% module efficiency. SiO2 and SiNx double insulating interlayers were optimized in order to transmit long wavelength photon to the Ge cell and achieve good passivation at the interlayer. The stack junction will be able to overcome the Si practical efficiency limit of 26% in the near future, and be the candidate for the next generation crystalline Si solar cell.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"51 1","pages":"12.6.1-12.6.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"High efficiency silicon and Germanium stack junction solar cells\",\"authors\":\"Dongkyun Kim, Youngmoon Choi, E. Do, Yeonil Lee, Yun-Gi Kim\",\"doi\":\"10.1109/IEDM.2012.6479032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have fabricated Si/Ge stack junction solar cells in order to overcome silicon single junction limit efficiency. Ge cell can absorb long wavelength photons that cannot be absorbed in Si. Bottom Ge solar cell can theoretically yield additional 5% efficiency to Si top cell. We have fabricated 21.3% top Si / 1.6% bottom Ge stack junction with 22.9% module efficiency. SiO2 and SiNx double insulating interlayers were optimized in order to transmit long wavelength photon to the Ge cell and achieve good passivation at the interlayer. The stack junction will be able to overcome the Si practical efficiency limit of 26% in the near future, and be the candidate for the next generation crystalline Si solar cell.\",\"PeriodicalId\":6376,\"journal\":{\"name\":\"2012 International Electron Devices Meeting\",\"volume\":\"51 1\",\"pages\":\"12.6.1-12.6.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2012.6479032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6479032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High efficiency silicon and Germanium stack junction solar cells
We have fabricated Si/Ge stack junction solar cells in order to overcome silicon single junction limit efficiency. Ge cell can absorb long wavelength photons that cannot be absorbed in Si. Bottom Ge solar cell can theoretically yield additional 5% efficiency to Si top cell. We have fabricated 21.3% top Si / 1.6% bottom Ge stack junction with 22.9% module efficiency. SiO2 and SiNx double insulating interlayers were optimized in order to transmit long wavelength photon to the Ge cell and achieve good passivation at the interlayer. The stack junction will be able to overcome the Si practical efficiency limit of 26% in the near future, and be the candidate for the next generation crystalline Si solar cell.