Chia-Hong Jan, U. Bhattacharya, R. Brain, S. Choi, G. Curello, G. Gupta, Walid M. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, Park Joodong, K. Phoa, Arifur Rahman, C. Staus, H. Tashiro, Tsai Curtis, P. Vandervoorn, Laurence T. Yang, J. Yeh, P. Bai
{"title":"采用3-D三栅极和高k/金属栅极的22nm SoC平台技术,针对超低功耗、高性能和高密度SoC应用进行了优化","authors":"Chia-Hong Jan, U. Bhattacharya, R. Brain, S. Choi, G. Curello, G. Gupta, Walid M. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, Park Joodong, K. Phoa, Arifur Rahman, C. Staus, H. Tashiro, Tsai Curtis, P. Vandervoorn, Laurence T. Yang, J. Yeh, P. Bai","doi":"10.1109/IEDM.2012.6478969","DOIUrl":null,"url":null,"abstract":"A leading edge 22nm 3-D tri-gate transistor technology has been optimized for low power SoC products for the first time. Low standby power and high voltage transistors exploiting the superior short channel control, <; 65mV/dec subthreshold slope and <;40mV DIBL, of the Tri-Gate architecture have been fabricated concurrently with high speed logic transistors in a single SoC chip to achieve industry leading drive currents at record low leakage levels. NMOS/PMOS Idsat=0.41/0.37mA/um at 30pA/um Ioff, 0.75V, were used to build a low standby power 380Mb SRAM capable of operating at 2.6GHz with 10pA/cell standby leakages. This technology offers mix-and-match flexibility of transistor types, high-density interconnect stacks, and RF/mixed-signal features for leadership in mobile, handheld, wireless and embedded SoC products.","PeriodicalId":6376,"journal":{"name":"2012 International Electron Devices Meeting","volume":"32 1","pages":"3.1.1-3.1.4"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":"{\"title\":\"A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications\",\"authors\":\"Chia-Hong Jan, U. Bhattacharya, R. Brain, S. Choi, G. Curello, G. Gupta, Walid M. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo, N. Nidhi, L. Pan, Park Joodong, K. Phoa, Arifur Rahman, C. Staus, H. Tashiro, Tsai Curtis, P. Vandervoorn, Laurence T. Yang, J. Yeh, P. Bai\",\"doi\":\"10.1109/IEDM.2012.6478969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A leading edge 22nm 3-D tri-gate transistor technology has been optimized for low power SoC products for the first time. Low standby power and high voltage transistors exploiting the superior short channel control, <; 65mV/dec subthreshold slope and <;40mV DIBL, of the Tri-Gate architecture have been fabricated concurrently with high speed logic transistors in a single SoC chip to achieve industry leading drive currents at record low leakage levels. NMOS/PMOS Idsat=0.41/0.37mA/um at 30pA/um Ioff, 0.75V, were used to build a low standby power 380Mb SRAM capable of operating at 2.6GHz with 10pA/cell standby leakages. This technology offers mix-and-match flexibility of transistor types, high-density interconnect stacks, and RF/mixed-signal features for leadership in mobile, handheld, wireless and embedded SoC products.\",\"PeriodicalId\":6376,\"journal\":{\"name\":\"2012 International Electron Devices Meeting\",\"volume\":\"32 1\",\"pages\":\"3.1.1-3.1.4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"278\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2012.6478969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2012.6478969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications
A leading edge 22nm 3-D tri-gate transistor technology has been optimized for low power SoC products for the first time. Low standby power and high voltage transistors exploiting the superior short channel control, <; 65mV/dec subthreshold slope and <;40mV DIBL, of the Tri-Gate architecture have been fabricated concurrently with high speed logic transistors in a single SoC chip to achieve industry leading drive currents at record low leakage levels. NMOS/PMOS Idsat=0.41/0.37mA/um at 30pA/um Ioff, 0.75V, were used to build a low standby power 380Mb SRAM capable of operating at 2.6GHz with 10pA/cell standby leakages. This technology offers mix-and-match flexibility of transistor types, high-density interconnect stacks, and RF/mixed-signal features for leadership in mobile, handheld, wireless and embedded SoC products.