{"title":"基于力特性曲线综合法的伯努利夹持器力学性能优化","authors":"Xubo Yu, Jianghong Zhao, Xin Li","doi":"10.1108/ir-01-2022-0010","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe Bernoulli gripper fixedly installed on the manipulator is subject to limitations such as a small-working region and poor anti-interference capacity. This paper aims to propose a novel Bernoulli gripper design that involves the connection of a positive stiffness component such as a spring in series, based on the force characteristic curve synthesis method, to optimize the mechanical performance.\n\n\nDesign/methodology/approach\nThe proposed gripper is designed and manufactured. In the suction procedure, the force characteristic curve of the proposed gripper is theoretically and experimentally investigated. In the hovering detection procedure, a dynamic model of the manipulator-gripper-workpiece system is established, and an apparatus is set up to compare the displacements of the workpiece and the manipulator. The proposed gripper is finally applied in the lifting procedure, showing good impact resistance.\n\n\nFindings\nThe optimization of mechanical performance of the proposed gripper is realized. The proposed gripper has the effect of increasing the stiffness of the negative stiffness part of the force characteristic curve and reducing the stiffness of the positive stiffness part, increasing the working region. The stability and the anti-interference ability of the workpiece under high-frequency vibration are improved. Meanwhile, the impact resistance in the lifting procedure is enhanced, compared with the original one.\n\n\nOriginality/value\nThis research proposes a novel design for the Bernoulli grippers to optimize the mechanical performance. The proposed gripper has advantages of a larger working region, better anti-interference ability and better impact resistance. These findings serve as important theoretical and experimental references for the design of the Bernoulli gripper.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization of mechanical performance of a Bernoulli gripper based on the force characteristic curve synthesis method\",\"authors\":\"Xubo Yu, Jianghong Zhao, Xin Li\",\"doi\":\"10.1108/ir-01-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe Bernoulli gripper fixedly installed on the manipulator is subject to limitations such as a small-working region and poor anti-interference capacity. This paper aims to propose a novel Bernoulli gripper design that involves the connection of a positive stiffness component such as a spring in series, based on the force characteristic curve synthesis method, to optimize the mechanical performance.\\n\\n\\nDesign/methodology/approach\\nThe proposed gripper is designed and manufactured. In the suction procedure, the force characteristic curve of the proposed gripper is theoretically and experimentally investigated. In the hovering detection procedure, a dynamic model of the manipulator-gripper-workpiece system is established, and an apparatus is set up to compare the displacements of the workpiece and the manipulator. The proposed gripper is finally applied in the lifting procedure, showing good impact resistance.\\n\\n\\nFindings\\nThe optimization of mechanical performance of the proposed gripper is realized. The proposed gripper has the effect of increasing the stiffness of the negative stiffness part of the force characteristic curve and reducing the stiffness of the positive stiffness part, increasing the working region. The stability and the anti-interference ability of the workpiece under high-frequency vibration are improved. Meanwhile, the impact resistance in the lifting procedure is enhanced, compared with the original one.\\n\\n\\nOriginality/value\\nThis research proposes a novel design for the Bernoulli grippers to optimize the mechanical performance. The proposed gripper has advantages of a larger working region, better anti-interference ability and better impact resistance. These findings serve as important theoretical and experimental references for the design of the Bernoulli gripper.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-01-2022-0010\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-01-2022-0010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Optimization of mechanical performance of a Bernoulli gripper based on the force characteristic curve synthesis method
Purpose
The Bernoulli gripper fixedly installed on the manipulator is subject to limitations such as a small-working region and poor anti-interference capacity. This paper aims to propose a novel Bernoulli gripper design that involves the connection of a positive stiffness component such as a spring in series, based on the force characteristic curve synthesis method, to optimize the mechanical performance.
Design/methodology/approach
The proposed gripper is designed and manufactured. In the suction procedure, the force characteristic curve of the proposed gripper is theoretically and experimentally investigated. In the hovering detection procedure, a dynamic model of the manipulator-gripper-workpiece system is established, and an apparatus is set up to compare the displacements of the workpiece and the manipulator. The proposed gripper is finally applied in the lifting procedure, showing good impact resistance.
Findings
The optimization of mechanical performance of the proposed gripper is realized. The proposed gripper has the effect of increasing the stiffness of the negative stiffness part of the force characteristic curve and reducing the stiffness of the positive stiffness part, increasing the working region. The stability and the anti-interference ability of the workpiece under high-frequency vibration are improved. Meanwhile, the impact resistance in the lifting procedure is enhanced, compared with the original one.
Originality/value
This research proposes a novel design for the Bernoulli grippers to optimize the mechanical performance. The proposed gripper has advantages of a larger working region, better anti-interference ability and better impact resistance. These findings serve as important theoretical and experimental references for the design of the Bernoulli gripper.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.